-
-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
7890228
commit 5b75e87
Showing
2 changed files
with
486 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,265 @@ | ||
from functools import singledispatch | ||
from typing import Optional, Tuple | ||
|
||
import aesara.tensor as at | ||
import aesara.tensor.random.basic as arb | ||
import numpy as np | ||
from aesara import scan | ||
from aesara.compile.builders import OpFromGraph | ||
from aesara.graph.op import Op | ||
from aesara.raise_op import CheckAndRaise | ||
from aesara.scan import until | ||
from aesara.tensor.random import RandomStream | ||
from aesara.tensor.random.op import RandomVariable | ||
from aesara.tensor.var import TensorConstant, TensorVariable | ||
|
||
from aeppl.abstract import MeasurableVariable, _get_measurable_outputs | ||
from aeppl.logprob import ( | ||
CheckParameterValue, | ||
_logcdf, | ||
_logprob, | ||
icdf, | ||
logcdf, | ||
logdiffexp, | ||
) | ||
|
||
|
||
class TruncatedRV(OpFromGraph): | ||
"""An `Op` constructed from an Aesara graph that represents a truncated univariate random variable.""" | ||
|
||
default_output = 0 | ||
base_rv_op = None | ||
|
||
def __init__(self, base_rv_op: Op, *args, **kwargs): | ||
self.base_rv_op = base_rv_op | ||
super().__init__(*args, **kwargs) | ||
|
||
|
||
MeasurableVariable.register(TruncatedRV) | ||
|
||
|
||
@_get_measurable_outputs.register(TruncatedRV) | ||
def _get_measurable_outputs_TruncatedRV(op, node): | ||
return [node.outputs[0]] | ||
|
||
|
||
@singledispatch | ||
def _truncated(op: Op, lower, upper, *params): | ||
"""Return the truncated equivalent of another `RandomVariable`.""" | ||
raise NotImplementedError( | ||
f"{op} does not have an equivalent truncated version implemented" | ||
) | ||
|
||
|
||
class TruncationError(Exception): | ||
"""Exception for errors generated from truncated graphs""" | ||
|
||
|
||
class TruncationCheck(CheckAndRaise): | ||
"""Implements a check in truncated graphs. | ||
Raises `TruncationError` if the check is not True. | ||
""" | ||
|
||
def __init__(self, msg=""): | ||
super().__init__(TruncationError, msg) | ||
|
||
def __str__(self): | ||
return f"TruncationCheck{{{self.msg}}}" | ||
|
||
|
||
def truncate( | ||
rv: TensorVariable, | ||
lower=None, | ||
upper=None, | ||
max_n_steps: int = 10_000, | ||
srng: Optional[RandomStream] = None, | ||
) -> Tuple[TensorVariable, Tuple[TensorVariable, TensorVariable]]: | ||
"""Truncate a univariate `RandomVariable` between `lower` and `upper`. | ||
If `lower` or `upper` is ``None``, the variable is not truncated on that side. | ||
Depending on whether or not a dispatch implementation is available, this | ||
function returns either a specialized `Op`, or an equivalent graph | ||
representing the truncation process via inverse CDF or rejection | ||
sampling. | ||
The argument `max_n_steps` controls the maximum number of resamples that are | ||
attempted when performing rejection sampling. A `TruncationError` is raised if | ||
convergence is not reached after that many steps. | ||
Returns | ||
======= | ||
`TensorVariable` graph representing the truncated `RandomVariable` and respective updates | ||
""" | ||
|
||
if lower is None and upper is None: | ||
raise ValueError("lower and upper cannot both be None") | ||
|
||
if not (isinstance(rv.owner.op, RandomVariable) and rv.owner.op.ndim_supp == 0): | ||
raise NotImplementedError( | ||
f"Truncation is only implemented for univariate random variables, got {rv.owner.op}" | ||
) | ||
|
||
lower = at.as_tensor_variable(lower) if lower is not None else at.constant(-np.inf) | ||
upper = at.as_tensor_variable(upper) if upper is not None else at.constant(np.inf) | ||
|
||
if srng is None: | ||
srng = RandomStream() | ||
|
||
# Try to use specialized Op | ||
try: | ||
truncated_rv, updates = _truncated( | ||
rv.owner.op, lower, upper, srng, *rv.owner.inputs[1:] | ||
) | ||
return truncated_rv, updates | ||
except NotImplementedError: | ||
pass | ||
|
||
# Variables with `_` suffix identify dummy inputs for the OpFromGraph | ||
# We will use the Shared RNG variable directly because Scan demands it, even | ||
# though it would not be necessary for the icdf OpFromGraph | ||
graph_inputs = [*rv.owner.inputs[1:], lower, upper] | ||
graph_inputs_ = [inp.type() for inp in graph_inputs] | ||
size_, dtype_, *rv_inputs_, lower_, upper_ = graph_inputs_ | ||
rv_ = srng.gen(rv.owner.op, *rv_inputs_, size=size_, dtype=dtype_) | ||
|
||
# Try to use inverted cdf sampling | ||
try: | ||
# For left truncated discrete RVs, we need to include the whole lower bound. | ||
# This may result in draws below the truncation range, if any uniform == 0 | ||
lower_value = lower_ - 1 if rv.owner.op.dtype.startswith("int") else lower_ | ||
cdf_lower_ = at.exp(logcdf(rv_, lower_value)) | ||
cdf_upper_ = at.exp(logcdf(rv_, upper_)) | ||
uniform_ = srng.uniform( | ||
cdf_lower_, | ||
cdf_upper_, | ||
size=size_, | ||
) | ||
truncated_rv_ = icdf(rv_, uniform_) | ||
truncated_rv = TruncatedRV( | ||
base_rv_op=rv.owner.op, | ||
inputs=graph_inputs_, | ||
outputs=[truncated_rv_, uniform_.owner.outputs[0]], | ||
inline=True, | ||
)(*graph_inputs) | ||
updates = {truncated_rv.owner.inputs[-1]: truncated_rv.owner.outputs[-1]} | ||
return truncated_rv, updates | ||
except NotImplementedError: | ||
pass | ||
|
||
# Fallback to rejection sampling | ||
# TODO: Handle potential broadcast by lower / upper | ||
def loop_fn(truncated_rv, reject_draws, lower, upper, size, dtype, *rv_inputs): | ||
new_truncated_rv = srng.gen(rv.owner.op, *rv_inputs, size=size, dtype=dtype) # type: ignore | ||
truncated_rv = at.set_subtensor( | ||
truncated_rv[reject_draws], | ||
new_truncated_rv[reject_draws], | ||
) | ||
reject_draws = at.or_((truncated_rv < lower), (truncated_rv > upper)) | ||
|
||
return (truncated_rv, reject_draws), until(~at.any(reject_draws)) | ||
|
||
(truncated_rv_, reject_draws_), updates = scan( | ||
loop_fn, | ||
outputs_info=[ | ||
at.zeros_like(rv_), | ||
at.ones_like(rv_, dtype=bool), | ||
], | ||
non_sequences=[lower_, upper_, size_, dtype_, *rv_inputs_], | ||
n_steps=max_n_steps, | ||
strict=True, | ||
) | ||
|
||
truncated_rv_ = truncated_rv_[-1] | ||
convergence_ = ~at.any(reject_draws_[-1]) | ||
truncated_rv_ = TruncationCheck( | ||
f"Truncation did not converge in {max_n_steps} steps" | ||
)(truncated_rv_, convergence_) | ||
|
||
truncated_rv = TruncatedRV( | ||
base_rv_op=rv.owner.op, | ||
inputs=graph_inputs_, | ||
# This will fail with `n_steps==1`, because in that case `Scan` won't return any updates | ||
outputs=[truncated_rv_, rv_.owner.outputs[0], tuple(updates.values())[0]], | ||
inline=True, | ||
)(*graph_inputs) | ||
# TODO: Is the order of multiple shared variables determnistic? | ||
assert truncated_rv.owner.inputs[-2] is rv_.owner.inputs[0] | ||
updates = { | ||
truncated_rv.owner.inputs[-2]: truncated_rv.owner.outputs[-2], | ||
truncated_rv.owner.inputs[-1]: truncated_rv.owner.outputs[-1], | ||
} | ||
return truncated_rv, updates | ||
|
||
|
||
@_logprob.register(TruncatedRV) | ||
def truncated_logprob(op, values, *inputs, **kwargs): | ||
(value,) = values | ||
|
||
# Rejection sample graph has two rngs | ||
if len(op.shared_inputs) == 2: | ||
*rv_inputs, lower_bound, upper_bound, _, rng = inputs | ||
else: | ||
*rv_inputs, lower_bound, upper_bound, rng = inputs | ||
rv_inputs = [rng, *rv_inputs] | ||
|
||
base_rv_op = op.base_rv_op | ||
logp = _logprob(base_rv_op, (value,), *rv_inputs, **kwargs) | ||
# For left truncated RVs, we don't want to include the lower bound in the | ||
# normalization term | ||
lower_bound_value = ( | ||
lower_bound - 1 if base_rv_op.dtype.startswith("int") else lower_bound | ||
) | ||
lower_logcdf = _logcdf(base_rv_op, lower_bound_value, *rv_inputs, **kwargs) | ||
upper_logcdf = _logcdf(base_rv_op, upper_bound, *rv_inputs, **kwargs) | ||
|
||
if base_rv_op.name: | ||
logp.name = f"{base_rv_op}_logprob" | ||
lower_logcdf.name = f"{base_rv_op}_lower_logcdf" | ||
upper_logcdf.name = f"{base_rv_op}_upper_logcdf" | ||
|
||
is_lower_bounded = not ( | ||
isinstance(lower_bound, TensorConstant) | ||
and np.all(np.isneginf(lower_bound.value)) | ||
) | ||
is_upper_bounded = not ( | ||
isinstance(upper_bound, TensorConstant) and np.all(np.isinf(upper_bound.value)) | ||
) | ||
|
||
lognorm = 0 | ||
if is_lower_bounded and is_upper_bounded: | ||
lognorm = logdiffexp(upper_logcdf, lower_logcdf) | ||
elif is_lower_bounded: | ||
lognorm = at.log1mexp(lower_logcdf) | ||
elif is_upper_bounded: | ||
lognorm = upper_logcdf | ||
|
||
logp = logp - lognorm | ||
|
||
if is_lower_bounded: | ||
logp = at.switch(value < lower_bound, -np.inf, logp) | ||
|
||
if is_upper_bounded: | ||
logp = at.switch(value <= upper_bound, logp, -np.inf) | ||
|
||
if is_lower_bounded and is_upper_bounded: | ||
logp = CheckParameterValue("lower_bound <= upper_bound")( | ||
logp, at.all(at.le(lower_bound, upper_bound)) | ||
) | ||
|
||
return logp | ||
|
||
|
||
@_truncated.register(arb.UniformRV) | ||
def uniform_truncated(op, lower, upper, srng, size, dtype, lower_orig, upper_orig): | ||
truncated_uniform = srng.gen( | ||
op, | ||
at.max((lower_orig, lower)), | ||
at.min((upper_orig, upper)), | ||
size=size, | ||
dtype=dtype, | ||
) | ||
return truncated_uniform, { | ||
truncated_uniform.owner.inputs[0]: truncated_uniform.owner.outputs[0] | ||
} |
Oops, something went wrong.