├── docker-compose.yml # Docker Compose configuration for the services
├── init.sql # SQL script to initialize the MySQL database
├── mlapi/ # The Flask API for handling requests
│ ├── Dockerfile # Dockerfile for building the Flask API container
│ ├── requirements.txt # Python dependencies
│ ├── app.py # Flask application
│ └── templates/ # HTML templates for rendering the UI
├── temperaturedata.csv # Historical temperature data for training the model
-
Clone the Repository
git clone https://github.com/affafghani98/Docker-ML-Deployment.git
-
Navigate to the Project Directory
cd Docker-Machine-Learning-API
-
Build and Start Services with Docker Compose
docker-compose up --build
- POST /predict: Receives historical temperature data and returns a prediction based on the trained machine learning model.
- Docker
- Docker Compose
- Python 3.x (inside the container)
This project is licensed under the MIT License.