Skip to content

Commit

Permalink
rm a couple of the functor (#141)
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist authored Aug 13, 2024
1 parent 676aff9 commit 3a84454
Show file tree
Hide file tree
Showing 4 changed files with 282 additions and 224 deletions.
31 changes: 8 additions & 23 deletions impredicative_set/imonad_lib.v
Original file line number Diff line number Diff line change
Expand Up @@ -221,6 +221,7 @@ Proof. by rewrite functor_o. Qed.

Section id_natural_transformation.
Variables C : functor.

Definition NId := fun A => @idfun (C A).
Let natural_id : naturality C C NId. Proof. by []. Qed.

Expand Down Expand Up @@ -525,47 +526,31 @@ Qed.

End composite_adjoint.

Definition operation (E : functor) (M : monad) := [the functor of E \o M] ~> M.
Definition operation (E : functor) (M : monad) := E \o M ~> M.
Notation "E .-operation M" := (operation E M).

Section algebraicity.
Variables (E : functor) (M : monad).
Definition algebraicity (op : (*E.-operation M*)E \o M ~~> M) :=
Definition algebraicity (op : E \o M ~~> M) :=
forall (A B : UU0) (f : A -> M B) (t : E (M A)),
op A t >>= f = op B ((E # (fun m => m >>= f)) t).
End algebraicity.

HB.mixin Record isAOperation (E : functor) (M : monad) (op : E \o M ~~> M) := {
algebraic : algebraicity op }.

#[short(type=aoperation)]
HB.structure Definition AOperation (E : functor) (M : monad) :=
{op of isAOperation E M op &
isNatural [the functor of E \o M] M op (*NB: this is an operation in fact*)}.
Notation aoperation := AOperation.type.
Arguments algebraic {E} {M} s.
isNatural (E \o M) M op (*NB: this is an operation in fact*)}.

(*Module AOperation.
Section aoperation.
Variables (E : functor) (M : monad).
Record mixin_of (op : E \O M ~> M) := Mixin { _ : algebraicity op }.
Record class_of (op : E \O M ~~> M) := Class {
base : Natural.mixin_of op ;
mixin : mixin_of (Natural.Pack base) }.
Structure t := Pack { m : E \O M ~~> M ; class : class_of m }.
Definition baseType (o : t) := Natural.Pack (base (class o)).
End aoperation.
Module Exports.
Arguments m {E} {M}.
Notation aoperation := t.
Coercion baseType : aoperation >-> nattrans.
Canonical baseType.
End Exports.
End AOperation.
Export AOperation.Exports.*)
Arguments algebraic {E} {M} s.

Notation "E .-aoperation M" := (aoperation E M).

Section algebraic_operation_interface.
Variables (E : functor) (M : monad) (op : E.-aoperation M).

Lemma aoperation_ext (f g : E.-aoperation M) :
f = g <-> forall a, (f a = g a :> (_ -> _)).
Proof.
Expand Down
Loading

0 comments on commit 3a84454

Please sign in to comment.