Skip to content

Vec.Properties: drop eq parameter when it is a property #2430

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Aug 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,19 @@ Deprecated modules
Deprecated names
----------------

* In `Data.Vec.Properties`:
```agda
++-assoc _ ↦ ++-assoc-eqFree
++-identityʳ _ ↦ ++-identityʳ-eqFree
unfold-∷ʳ _ ↦ unfold-∷ʳ-eqFree
++-∷ʳ _ ↦ ++-∷ʳ-eqFree
∷ʳ-++ _ ↦ ∷ʳ-++-eqFree
reverse-++ _ ↦ reverse-++-eqFree
∷-ʳ++ _ ↦ ∷-ʳ++-eqFree
++-ʳ++ _ ↦ ++-ʳ++-eqFree
ʳ++-ʳ++ _ ↦ ʳ++-ʳ++-eqFree
```

New modules
-----------

Expand Down
18 changes: 9 additions & 9 deletions doc/README/Data/Vec/Relation/Binary/Equality/Cast.agda
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ example1a-fromList-∷ʳ x xs eq = begin
cast eq₂ (cast eq₁ (fromList (xs List.++ List.[ x ])))
≡⟨ cong (cast eq₂) (fromList-++ xs) ⟩
cast eq₂ (fromList xs ++ [ x ])
≡⟨ ≈-sym (unfold-∷ʳ (sym eq₂) x (fromList xs)) ⟩
≡⟨ ≈-sym (unfold-∷ʳ-eqFree x (fromList xs)) ⟩
fromList xs ∷ʳ x
where
Expand All @@ -114,7 +114,7 @@ example1b-fromList-∷ʳ x xs eq = begin
fromList (xs List.++ List.[ x ])
≈⟨ fromList-++ xs ⟩
fromList xs ++ [ x ]
≈⟨ unfold-∷ʳ (+-comm 1 (List.length xs)) x (fromList xs) ⟨
≈⟨ unfold-∷ʳ-eqFree x (fromList xs) ⟨
fromList xs ∷ʳ x
where open CastReasoning
Expand All @@ -138,8 +138,8 @@ example1b-fromList-∷ʳ x xs eq = begin
example2a : ∀ .(eq : suc m + n ≡ m + suc n) (xs : Vec A m) a ys →
cast eq ((reverse xs ∷ʳ a) ++ ys) ≡ reverse xs ++ (a ∷ ys)
example2a eq xs a ys = begin
(reverse xs ∷ʳ a) ++ ys ≈⟨ ∷ʳ-++ eq a (reverse xs) ⟩ -- index: suc m + n
reverse xs ++ (a ∷ ys) ∎ -- index: m + suc n
(reverse xs ∷ʳ a) ++ ys ≈⟨ ∷ʳ-++-eqFree a (reverse xs) ⟩ -- index: suc m + n
reverse xs ++ (a ∷ ys) ∎ -- index: m + suc n
where open CastReasoning

-- To interoperate with `_≡_`, this library provides `_≂⟨_⟩_` (\-~) for
Expand All @@ -158,7 +158,7 @@ example2b : ∀ .(eq : suc m + n ≡ m + suc n) (xs : Vec A m) a ys →
example2b eq xs a ys = begin
(a ∷ xs) ʳ++ ys ≂⟨ unfold-ʳ++ (a ∷ xs) ys ⟩ -- index: suc m + n
reverse (a ∷ xs) ++ ys ≂⟨ cong (_++ ys) (reverse-∷ a xs) ⟩ -- index: suc m + n
(reverse xs ∷ʳ a) ++ ys ≈⟨ ∷ʳ-++ eq a (reverse xs) ⟩ -- index: suc m + n
(reverse xs ∷ʳ a) ++ ys ≈⟨ ∷ʳ-++-eqFree a (reverse xs) ⟩ -- index: suc m + n
reverse xs ++ (a ∷ ys) ≂⟨ unfold-ʳ++ xs (a ∷ ys) ⟨ -- index: m + suc n
xs ʳ++ (a ∷ ys) ∎ -- index: m + suc n
where open CastReasoning
Expand Down Expand Up @@ -220,9 +220,9 @@ example4-cong² {m = m} {n} eq a xs ys = begin
reverse ((xs ++ [ a ]) ++ ys)
≈⟨ ≈-cong reverse (cast-reverse (cong (_+ n) (+-comm 1 m)) ((xs ∷ʳ a) ++ ys))
(≈-cong (_++ ys) (cast-++ˡ (+-comm 1 m) (xs ∷ʳ a))
(unfold-∷ʳ _ a xs)) ⟨
(unfold-∷ʳ-eqFree a xs)) ⟨
reverse ((xs ∷ʳ a) ++ ys)
≈⟨ reverse-++ (+-comm (suc m) n) (xs ∷ʳ a) ys ⟩
≈⟨ reverse-++-eqFree (xs ∷ʳ a) ys ⟩
reverse ys ++ reverse (xs ∷ʳ a)
≂⟨ unfold-ʳ++ ys (reverse (xs ∷ʳ a)) ⟨
ys ʳ++ reverse (xs ∷ʳ a)
Expand Down Expand Up @@ -264,9 +264,9 @@ example6a-reverse-∷ʳ {n = n} x xs = begin-≡
reverse (xs ∷ʳ x)
≡⟨ ≈-reflexive refl ⟨
reverse (xs ∷ʳ x)
≈⟨ ≈-cong reverse (cast-reverse _ _) (unfold-∷ʳ (+-comm 1 n) x xs) ⟩
≈⟨ ≈-cong reverse (cast-reverse _ _) (unfold-∷ʳ-eqFree x xs) ⟩
reverse (xs ++ [ x ])
≈⟨ reverse-++ (+-comm n 1) xs [ x ] ⟩
≈⟨ reverse-++-eqFree xs [ x ] ⟩
x ∷ reverse xs
where open CastReasoning
Expand Down
163 changes: 122 additions & 41 deletions src/Data/Vec/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ import Data.List.Properties as List
open import Data.Nat.Base using (ℕ; zero; suc; _+_; _≤_; _<_; s≤s; pred; s<s⁻¹; _≥_;
s≤s⁻¹; z≤n)
open import Data.Nat.Properties
using (+-assoc; m≤n⇒m≤1+n; m≤m+n; ≤-refl; ≤-trans; ≤-irrelevant; ≤⇒≤″; suc-injective; +-comm; +-suc)
using (+-assoc; m≤n⇒m≤1+n; m≤m+n; ≤-refl; ≤-trans; ≤-irrelevant; ≤⇒≤″; suc-injective; +-comm; +-suc; +-identityʳ)
open import Data.Product.Base as Product
using (_×_; _,_; proj₁; proj₂; <_,_>; uncurry)
open import Data.Sum.Base using ([_,_]′)
Expand All @@ -38,6 +38,10 @@ open import Relation.Nullary.Decidable.Core using (Dec; does; yes; _×-dec_; map
open import Relation.Nullary.Negation.Core using (contradiction)
import Data.Nat.GeneralisedArithmetic as ℕ

private
m+n+o≡n+[m+o] : ∀ m n o → m + n + o ≡ n + (m + o)
m+n+o≡n+[m+o] m n o = trans (cong (_+ o) (+-comm m n)) (+-assoc n m o)

private
variable
a b c d p : Level
Expand Down Expand Up @@ -479,14 +483,14 @@ toList-map f (x ∷ xs) = cong (f x List.∷_) (toList-map f xs)
++-injective ws xs eq =
(++-injectiveˡ ws xs eq , ++-injectiveʳ ws xs eq)

++-assoc : ∀ .(eq : (m + n) + o ≡ m + (n + o)) (xs : Vec A m) (ys : Vec A n) (zs : Vec A o) →
cast eq ((xs ++ ys) ++ zs) ≡ xs ++ (ys ++ zs)
++-assoc eq [] ys zs = cast-is-id eq (ys ++ zs)
++-assoc eq (x ∷ xs) ys zs = cong (x ∷_) (++-assoc (cong pred eq) xs ys zs)
++-assoc-eqFree : ∀ (xs : Vec A m) (ys : Vec A n) (zs : Vec A o) → let eq = +-assoc m n o in
cast eq ((xs ++ ys) ++ zs) ≡ xs ++ (ys ++ zs)
++-assoc-eqFree [] ys zs = cast-is-id refl (ys ++ zs)
++-assoc-eqFree (x ∷ xs) ys zs = cong (x ∷_) (++-assoc-eqFree xs ys zs)

++-identityʳ : ∀ .(eq : n + zero ≡ n) (xs : Vec A n) → cast eq (xs ++ []) ≡ xs
++-identityʳ eq [] = refl
++-identityʳ eq (x ∷ xs) = cong (x ∷_) (++-identityʳ (cong pred eq) xs)
++-identityʳ-eqFree : ∀ (xs : Vec A n) → cast (+-identityʳ n) (xs ++ []) ≡ xs
++-identityʳ-eqFree [] = refl
++-identityʳ-eqFree (x ∷ xs) = cong (x ∷_) (++-identityʳ-eqFree xs)

cast-++ˡ : ∀ .(eq : m ≡ o) (xs : Vec A m) {ys : Vec A n} →
cast (cong (_+ n) eq) (xs ++ ys) ≡ cast eq xs ++ ys
Expand Down Expand Up @@ -880,9 +884,9 @@ map-is-foldr f = foldr-universal (Vec _) (λ x ys → f x ∷ ys) (map f) refl (

-- snoc is snoc

unfold-∷ʳ : ∀ .(eq : suc n ≡ n + 1) x (xs : Vec A n) → cast eq (xs ∷ʳ x) ≡ xs ++ [ x ]
unfold-∷ʳ eq x [] = refl
unfold-∷ʳ eq x (y ∷ xs) = cong (y ∷_) (unfold-∷ʳ (cong pred eq) x xs)
unfold-∷ʳ-eqFree : ∀ x (xs : Vec A n) → cast (+-comm 1 n) (xs ∷ʳ x) ≡ xs ++ [ x ]
unfold-∷ʳ-eqFree x [] = refl
unfold-∷ʳ-eqFree x (y ∷ xs) = cong (y ∷_) (unfold-∷ʳ-eqFree x xs)

∷ʳ-injective : ∀ (xs ys : Vec A n) → xs ∷ʳ x ≡ ys ∷ʳ y → xs ≡ ys × x ≡ y
∷ʳ-injective [] [] refl = (refl , refl)
Expand Down Expand Up @@ -930,16 +934,16 @@ cast-∷ʳ {m = suc m} eq x (y ∷ xs) = cong (y ∷_) (cast-∷ʳ (cong pred eq

-- _++_ and _∷ʳ_

++-∷ʳ : ∀ .(eq : suc (m + n) ≡ m + suc n) z (xs : Vec A m) (ys : Vec A n) →
cast eq ((xs ++ ys) ∷ʳ z) ≡ xs ++ (ys ∷ʳ z)
++-∷ʳ {m = zero} eq z [] [] = refl
++-∷ʳ {m = zero} eq z [] (y ∷ ys) = cong (y ∷_) (++-∷ʳ refl z [] ys)
++-∷ʳ {m = suc m} eq z (x ∷ xs) ys = cong (x ∷_) (++-∷ʳ (cong pred eq) z xs ys)
++-∷ʳ-eqFree : ∀ z (xs : Vec A m) (ys : Vec A n) → let eq = sym (+-suc m n) in
cast eq ((xs ++ ys) ∷ʳ z) ≡ xs ++ (ys ∷ʳ z)
++-∷ʳ-eqFree {m = zero} z [] [] = refl
++-∷ʳ-eqFree {m = zero} z [] (y ∷ ys) = cong (y ∷_) (++-∷ʳ-eqFree z [] ys)
++-∷ʳ-eqFree {m = suc m} z (x ∷ xs) ys = cong (x ∷_) (++-∷ʳ-eqFree z xs ys)

∷ʳ-++ : ∀ .(eq : (suc n) + m ≡ n + suc m) a (xs : Vec A n) {ys} →
cast eq ((xs ∷ʳ a) ++ ys) ≡ xs ++ (a ∷ ys)
∷ʳ-++ eq a [] {ys} = cong (a ∷_) (cast-is-id (cong pred eq) ys)
∷ʳ-++ eq a (x ∷ xs) {ys} = cong (x ∷_) (∷ʳ-++ (cong pred eq) a xs)
∷ʳ-++-eqFree : ∀ a (xs : Vec A n) {ys : Vec A m} → let eq = sym (+-suc n m) in
cast eq ((xs ∷ʳ a) ++ ys) ≡ xs ++ (a ∷ ys)
∷ʳ-++-eqFree a [] {ys} = cong (a ∷_) (cast-is-id refl ys)
∷ʳ-++-eqFree a (x ∷ xs) {ys} = cong (x ∷_) (∷ʳ-++-eqFree a xs)

------------------------------------------------------------------------
-- reverse
Expand Down Expand Up @@ -1025,14 +1029,14 @@ map-reverse f (x ∷ xs) = begin

-- append and reverse

reverse-++ : ∀ .(eq : m + n ≡ n + m) (xs : Vec A m) (ys : Vec A n) →
cast eq (reverse (xs ++ ys)) ≡ reverse ys ++ reverse xs
reverse-++ {m = zero} {n = n} eq [] ys = ≈-sym (++-identityʳ (sym eq) (reverse ys))
reverse-++ {m = suc m} {n = n} eq (x ∷ xs) ys = begin
reverse-++-eqFree : ∀ (xs : Vec A m) (ys : Vec A n) → let eq = +-comm m n in
cast eq (reverse (xs ++ ys)) ≡ reverse ys ++ reverse xs
reverse-++-eqFree {m = zero} {n = n} [] ys = ≈-sym (++-identityʳ-eqFree (reverse ys))
reverse-++-eqFree {m = suc m} {n = n} (x ∷ xs) ys = begin
reverse (x ∷ xs ++ ys) ≂⟨ reverse-∷ x (xs ++ ys) ⟩
reverse (xs ++ ys) ∷ʳ x ≈⟨ ≈-cong (_∷ʳ x) (cast-∷ʳ (cong suc (+-comm m n)) x (reverse (xs ++ ys)))
(reverse-++ _ xs ys) ⟩
(reverse ys ++ reverse xs) ∷ʳ x ≈⟨ ++-∷ʳ (sym (+-suc n m)) x (reverse ys) (reverse xs) ⟩
(reverse-++-eqFree xs ys) ⟩
(reverse ys ++ reverse xs) ∷ʳ x ≈⟨ ++-∷ʳ-eqFree x (reverse ys) (reverse xs) ⟩
reverse ys ++ (reverse xs ∷ʳ x) ≂⟨ cong (reverse ys ++_) (reverse-∷ x xs) ⟨
reverse ys ++ (reverse (x ∷ xs)) ∎
where open CastReasoning
Expand Down Expand Up @@ -1076,37 +1080,37 @@ map-ʳ++ {ys = ys} f xs = begin
map f xs ʳ++ map f ys ∎
where open ≡-Reasoning

∷-ʳ++ : ∀ .(eq : (suc m) + n ≡ m + suc n) a (xs : Vec A m) {ys} →
cast eq ((a ∷ xs) ʳ++ ys) ≡ xs ʳ++ (a ∷ ys)
∷-ʳ++ eq a xs {ys} = begin
∷-ʳ++-eqFree : ∀ a (xs : Vec A m) {ys : Vec A n} → let eq = sym (+-suc m n) in
cast eq ((a ∷ xs) ʳ++ ys) ≡ xs ʳ++ (a ∷ ys)
∷-ʳ++-eqFree a xs {ys} = begin
(a ∷ xs) ʳ++ ys ≂⟨ unfold-ʳ++ (a ∷ xs) ys ⟩
reverse (a ∷ xs) ++ ys ≂⟨ cong (_++ ys) (reverse-∷ a xs) ⟩
(reverse xs ∷ʳ a) ++ ys ≈⟨ ∷ʳ-++ eq a (reverse xs) ⟩
(reverse xs ∷ʳ a) ++ ys ≈⟨ ∷ʳ-++-eqFree a (reverse xs) ⟩
reverse xs ++ (a ∷ ys) ≂⟨ unfold-ʳ++ xs (a ∷ ys) ⟨
xs ʳ++ (a ∷ ys) ∎
where open CastReasoning

++-ʳ++ : ∀ .(eq : m + n + o ≡ n + (m + o)) (xs : Vec A m) {ys : Vec A n} {zs : Vec A o} →
cast eq ((xs ++ ys) ʳ++ zs) ≡ ys ʳ++ (xs ʳ++ zs)
++-ʳ++ {m = m} {n} {o} eq xs {ys} {zs} = begin
++-ʳ++-eqFree : ∀ (xs : Vec A m) {ys : Vec A n} {zs : Vec A o} → let eq = m+n+o≡n+[m+o] m n o in
cast eq ((xs ++ ys) ʳ++ zs) ≡ ys ʳ++ (xs ʳ++ zs)
++-ʳ++-eqFree {m = m} {n} {o} xs {ys} {zs} = begin
((xs ++ ys) ʳ++ zs) ≂⟨ unfold-ʳ++ (xs ++ ys) zs ⟩
reverse (xs ++ ys) ++ zs ≈⟨ ≈-cong (_++ zs) (cast-++ˡ (+-comm m n) (reverse (xs ++ ys)))
(reverse-++ (+-comm m n) xs ys) ⟩
(reverse ys ++ reverse xs) ++ zs ≈⟨ ++-assoc (trans (cong (_+ o) (+-comm n m)) eq) (reverse ys) (reverse xs) zs ⟩
(reverse-++-eqFree xs ys) ⟩
(reverse ys ++ reverse xs) ++ zs ≈⟨ ++-assoc-eqFree (reverse ys) (reverse xs) zs ⟩
reverse ys ++ (reverse xs ++ zs) ≂⟨ cong (reverse ys ++_) (unfold-ʳ++ xs zs) ⟨
reverse ys ++ (xs ʳ++ zs) ≂⟨ unfold-ʳ++ ys (xs ʳ++ zs) ⟨
ys ʳ++ (xs ʳ++ zs) ∎
where open CastReasoning

ʳ++-ʳ++ : ∀ .(eq : (m + n) + o ≡ n + (m + o)) (xs : Vec A m) {ys : Vec A n} {zs} →
cast eq ((xs ʳ++ ys) ʳ++ zs) ≡ ys ʳ++ (xs ++ zs)
ʳ++-ʳ++ {m = m} {n} {o} eq xs {ys} {zs} = begin
ʳ++-ʳ++-eqFree : ∀ (xs : Vec A m) {ys : Vec A n} {zs : Vec A o} → let eq = m+n+o≡n+[m+o] m n o in
cast eq ((xs ʳ++ ys) ʳ++ zs) ≡ ys ʳ++ (xs ++ zs)
ʳ++-ʳ++-eqFree {m = m} {n} {o} xs {ys} {zs} = begin
(xs ʳ++ ys) ʳ++ zs ≂⟨ cong (_ʳ++ zs) (unfold-ʳ++ xs ys) ⟩
(reverse xs ++ ys) ʳ++ zs ≂⟨ unfold-ʳ++ (reverse xs ++ ys) zs ⟩
reverse (reverse xs ++ ys) ++ zs ≈⟨ ≈-cong (_++ zs) (cast-++ˡ (+-comm m n) (reverse (reverse xs ++ ys)))
(reverse-++ (+-comm m n) (reverse xs) ys) ⟩
(reverse-++-eqFree (reverse xs) ys) ⟩
(reverse ys ++ reverse (reverse xs)) ++ zs ≂⟨ cong ((_++ zs) ∘ (reverse ys ++_)) (reverse-involutive xs) ⟩
(reverse ys ++ xs) ++ zs ≈⟨ ++-assoc (+-assoc n m o) (reverse ys) xs zs ⟩
(reverse ys ++ xs) ++ zs ≈⟨ ++-assoc-eqFree (reverse ys) xs zs ⟩
reverse ys ++ (xs ++ zs) ≂⟨ unfold-ʳ++ ys (xs ++ zs) ⟨
ys ʳ++ (xs ++ zs) ∎
where open CastReasoning
Expand Down Expand Up @@ -1333,14 +1337,91 @@ fromList-reverse List.[] = refl
fromList-reverse (x List.∷ xs) = begin
fromList (List.reverse (x List.∷ xs)) ≈⟨ cast-fromList (List.ʳ++-defn xs) ⟩
fromList (List.reverse xs List.++ List.[ x ]) ≈⟨ fromList-++ (List.reverse xs) ⟩
fromList (List.reverse xs) ++ [ x ] ≈⟨ unfold-∷ʳ (+-comm 1 _) x (fromList (List.reverse xs)) ⟨
fromList (List.reverse xs) ++ [ x ] ≈⟨ unfold-∷ʳ-eqFree x (fromList (List.reverse xs)) ⟨
fromList (List.reverse xs) ∷ʳ x ≈⟨ ≈-cong (_∷ʳ x) (cast-∷ʳ (cong suc (List.length-reverse xs)) _ _)
(fromList-reverse xs) ⟩
reverse (fromList xs) ∷ʳ x ≂⟨ reverse-∷ x (fromList xs) ⟨
reverse (x ∷ fromList xs) ≈⟨⟩
reverse (fromList (x List.∷ xs)) ∎
where open CastReasoning

------------------------------------------------------------------------
-- TRANSITION TO EQ-FREE LEMMA
------------------------------------------------------------------------
-- Please use the new proofs, which do not require an `eq` parameter.
-- In v3, `name` will be changed to be the same lemma as `name-eqFree`,
-- and `name-eqFree` will be deprecated.

++-assoc : ∀ .(eq : (m + n) + o ≡ m + (n + o)) (xs : Vec A m) (ys : Vec A n) (zs : Vec A o) →
cast eq ((xs ++ ys) ++ zs) ≡ xs ++ (ys ++ zs)
++-assoc _ = ++-assoc-eqFree
{-# WARNING_ON_USAGE ++-assoc
"Warning: ++-assoc was deprecated in v2.2.
Please use ++-assoc-eqFree instead, which does not take eq."
#-}

++-identityʳ : ∀ .(eq : n + zero ≡ n) (xs : Vec A n) → cast eq (xs ++ []) ≡ xs
++-identityʳ _ = ++-identityʳ-eqFree
{-# WARNING_ON_USAGE ++-identityʳ
"Warning: ++-identityʳ was deprecated in v2.2.
Please use ++-identityʳ-eqFree instead, which does not take eq."
#-}

unfold-∷ʳ : ∀ .(eq : suc n ≡ n + 1) x (xs : Vec A n) → cast eq (xs ∷ʳ x) ≡ xs ++ [ x ]
unfold-∷ʳ _ = unfold-∷ʳ-eqFree
{-# WARNING_ON_USAGE unfold-∷ʳ
"Warning: unfold-∷ʳ was deprecated in v2.2.
Please use unfold-∷ʳ-eqFree instead, which does not take eq."
#-}

++-∷ʳ : ∀ .(eq : suc (m + n) ≡ m + suc n) z (xs : Vec A m) (ys : Vec A n) →
cast eq ((xs ++ ys) ∷ʳ z) ≡ xs ++ (ys ∷ʳ z)
++-∷ʳ _ = ++-∷ʳ-eqFree
{-# WARNING_ON_USAGE ++-∷ʳ
"Warning: ++-∷ʳ was deprecated in v2.2.
Please use ++-∷ʳ-eqFree instead, which does not take eq."
#-}

∷ʳ-++ : ∀ .(eq : (suc n) + m ≡ n + suc m) a (xs : Vec A n) {ys} →
cast eq ((xs ∷ʳ a) ++ ys) ≡ xs ++ (a ∷ ys)
∷ʳ-++ _ = ∷ʳ-++-eqFree
{-# WARNING_ON_USAGE ∷ʳ-++
"Warning: ∷ʳ-++ was deprecated in v2.2.
Please use ∷ʳ-++-eqFree instead, which does not take eq."
#-}

reverse-++ : ∀ .(eq : m + n ≡ n + m) (xs : Vec A m) (ys : Vec A n) →
cast eq (reverse (xs ++ ys)) ≡ reverse ys ++ reverse xs
reverse-++ _ = reverse-++-eqFree
{-# WARNING_ON_USAGE reverse-++
"Warning: reverse-++ was deprecated in v2.2.
Please use reverse-++-eqFree instead, which does not take eq."
#-}

∷-ʳ++ : ∀ .(eq : (suc m) + n ≡ m + suc n) a (xs : Vec A m) {ys} →
cast eq ((a ∷ xs) ʳ++ ys) ≡ xs ʳ++ (a ∷ ys)
∷-ʳ++ _ = ∷-ʳ++-eqFree
{-# WARNING_ON_USAGE ∷-ʳ++
"Warning: ∷-ʳ++ was deprecated in v2.2.
Please use ∷-ʳ++-eqFree instead, which does not take eq."
#-}

++-ʳ++ : ∀ .(eq : m + n + o ≡ n + (m + o)) (xs : Vec A m) {ys : Vec A n} {zs : Vec A o} →
cast eq ((xs ++ ys) ʳ++ zs) ≡ ys ʳ++ (xs ʳ++ zs)
++-ʳ++ _ = ++-ʳ++-eqFree
{-# WARNING_ON_USAGE ++-ʳ++
"Warning: ++-ʳ++ was deprecated in v2.2.
Please use ++-ʳ++-eqFree instead, which does not take eq."
#-}

ʳ++-ʳ++ : ∀ .(eq : (m + n) + o ≡ n + (m + o)) (xs : Vec A m) {ys : Vec A n} {zs} →
cast eq ((xs ʳ++ ys) ʳ++ zs) ≡ ys ʳ++ (xs ++ zs)
ʳ++-ʳ++ _ = ʳ++-ʳ++-eqFree
{-# WARNING_ON_USAGE ʳ++-ʳ++
"Warning: ʳ++-ʳ++ was deprecated in v2.2.
Please use ʳ++-ʳ++-eqFree instead, which does not take eq."
#-}

------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
Expand Down