Skip to content

Commit

Permalink
Move direct proof of uaη to Cubical.Foundations.Univalence
Browse files Browse the repository at this point in the history
This proof is due to @dolio, cf. commit e42a6fa.
  • Loading branch information
phijor committed Nov 3, 2023
1 parent 0dcfa97 commit 39f61f4
Show file tree
Hide file tree
Showing 3 changed files with 11 additions and 7 deletions.
7 changes: 2 additions & 5 deletions Cubical/Foundations/Transport.agda
Original file line number Diff line number Diff line change
Expand Up @@ -82,11 +82,8 @@ transpEquiv p = Equiv.transpEquiv (λ i → p i)
{-# WARNING_ON_USAGE transpEquiv "Deprecated: Use the more general `transpEquiv` from `Cubical.Foundations.Equiv` instead" #-}

uaTransportη : {ℓ} {A B : Type ℓ} (P : A ≡ B) ua (pathToEquiv P) ≡ P
uaTransportη P i j
= Glue (P i1) λ where
(j = i0) P i0 , pathToEquiv P
(i = i1) P j , transpEquiv P j
(j = i1) P i1 , idEquiv (P i1)
uaTransportη = uaη
{-# WARNING_ON_USAGE uaTransportη "Deprecated: Use `uaη` from `Cubical.Foundations.Univalence` instead of `uaTransportη`" #-}

pathToIso : {ℓ} {A B : Type ℓ} A ≡ B Iso A B
Iso.fun (pathToIso x) = transport x
Expand Down
9 changes: 8 additions & 1 deletion Cubical/Foundations/Univalence.agda
Original file line number Diff line number Diff line change
Expand Up @@ -240,7 +240,14 @@ uaβ : {A B : Type ℓ} (e : A ≃ B) (x : A) → transport (ua e) x ≡ equivFu
uaβ e x = transportRefl (equivFun e x)

uaη : {A B : Type ℓ} (P : A ≡ B) ua (pathToEquiv P) ≡ P
uaη = J (λ _ q ua (pathToEquiv q) ≡ q) (cong ua pathToEquivRefl ∙ uaIdEquiv)
uaη {A = A} {B = B} P i j = Glue B {φ = φ} sides where
-- Adapted from a proof by @dolio, cf. commit e42a6fa1
φ = i ∨ j ∨ ~ j

sides : Partial φ (Σ[ T ∈ Type _ ] T ≃ B)
sides (i = i1) = P j , transpEquiv (λ k P k) j
sides (j = i0) = A , pathToEquiv P
sides (j = i1) = B , idEquiv B

-- Lemmas for constructing and destructing dependent paths in a function type where the domain is ua.
ua→ : {ℓ ℓ'} {A₀ A₁ : Type ℓ} {e : A₀ ≃ A₁} {B : (i : I) Type ℓ'}
Expand Down
2 changes: 1 addition & 1 deletion Cubical/Foundations/Univalence/Universe.agda
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ module UU-Lemmas where
: x y (p : El x ≡ El y)
cong El (un x y (pathToEquiv p)) ≡ p
cong-un-te x y p
= comp (pathToEquiv p) ∙ uaTransportη p
= comp (pathToEquiv p) ∙ uaη p

nu-un : x y (e : El x ≃ El y) nu x y (un x y e) ≡ e
nu-un x y e
Expand Down

0 comments on commit 39f61f4

Please sign in to comment.