Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Functorial qcqs-schemes #1086

Merged
merged 14 commits into from
Feb 26, 2024
3 changes: 2 additions & 1 deletion Cubical/Categories/Instances/CommRings.agda
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
{-# OPTIONS --safe #-}
{-# OPTIONS --safe --lossy-unification #-}
module Cubical.Categories.Instances.CommRings where

open import Cubical.Foundations.Prelude
@@ -105,6 +105,7 @@ module _ {ℓ : Level} where
snd (fst (snd TerminalCommRing y)) = makeIsRingHom refl (λ _ _ → refl) (λ _ _ → refl)
snd (snd TerminalCommRing y) f = RingHom≡ (funExt (λ _ → refl))


open Pullback

{-
188 changes: 118 additions & 70 deletions Cubical/Categories/Instances/ZFunctors.agda
Original file line number Diff line number Diff line change
@@ -37,9 +37,13 @@ open import Cubical.Categories.Instances.CommRings
open import Cubical.Categories.Instances.DistLattice
open import Cubical.Categories.Instances.DistLattices
open import Cubical.Categories.Instances.Functors
open import Cubical.Categories.Site.Coverage
open import Cubical.Categories.Site.Sheaf
open import Cubical.Categories.Site.Instances.ZariskiCommRing
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Yoneda


open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.HITs.SetQuotients as SQ

@@ -59,11 +63,11 @@ module _ {ℓ : Level} where
open CommRingStr ⦃...⦄
open IsRingHom

-- using the naming conventions of Nieper-Wisskirchen
-- using the naming conventions of Demazure & Gabriel
ℤFunctor = Functor (CommRingsCategory {ℓ = ℓ}) (SET ℓ)
ℤFUNCTOR = FUNCTOR (CommRingsCategory {ℓ = ℓ}) (SET ℓ)

-- Yoneda in the notation of Demazure-Gabriel,
-- Yoneda in the notation of Demazure & Gabriel,
-- uses that double op is original category definitionally
Sp : Functor (CommRingsCategory {ℓ = ℓ} ^op) ℤFUNCTOR
Sp = YO {C = (CommRingsCategory {ℓ = ℓ} ^op)}
@@ -75,21 +79,21 @@ module _ {ℓ : Level} where
𝔸¹ = ForgetfulCommRing→Set

-- the global sections functor
Γ : Functor ℤFUNCTOR (CommRingsCategory {ℓ = ℓ-suc ℓ} ^op)
fst (F-ob Γ X) = X ⇒ 𝔸¹
𝓞 : Functor ℤFUNCTOR (CommRingsCategory {ℓ = ℓ-suc ℓ} ^op)
fst (F-ob 𝓞 X) = X ⇒ 𝔸¹

-- ring struncture induced by internal ring object 𝔸¹
N-ob (CommRingStr.0r (snd (F-ob Γ X))) A _ = 0r
N-ob (CommRingStr.0r (snd (F-ob 𝓞 X))) A _ = 0r
where instance _ = A .snd
N-hom (CommRingStr.0r (snd (F-ob Γ X))) φ = funExt λ _ → sym (φ .snd .pres0)
N-hom (CommRingStr.0r (snd (F-ob 𝓞 X))) φ = funExt λ _ → sym (φ .snd .pres0)

N-ob (CommRingStr.1r (snd (F-ob Γ X))) A _ = 1r
N-ob (CommRingStr.1r (snd (F-ob 𝓞 X))) A _ = 1r
where instance _ = A .snd
N-hom (CommRingStr.1r (snd (F-ob Γ X))) φ = funExt λ _ → sym (φ .snd .pres1)
N-hom (CommRingStr.1r (snd (F-ob 𝓞 X))) φ = funExt λ _ → sym (φ .snd .pres1)

N-ob ((snd (F-ob Γ X) CommRingStr.+ α) β) A x = α .N-ob A x + β .N-ob A x
N-ob ((snd (F-ob 𝓞 X) CommRingStr.+ α) β) A x = α .N-ob A x + β .N-ob A x
where instance _ = A .snd
N-hom ((snd (F-ob Γ X) CommRingStr.+ α) β) {x = A} {y = B} φ = funExt path
N-hom ((snd (F-ob 𝓞 X) CommRingStr.+ α) β) {x = A} {y = B} φ = funExt path
where
instance
_ = A .snd
@@ -102,9 +106,9 @@ module _ {ℓ : Level} where
≡⟨ sym (φ .snd .pres+ _ _) ⟩
φ .fst (α .N-ob A x + β .N-ob A x) ∎

N-ob ((snd (F-ob Γ X) CommRingStr.· α) β) A x = α .N-ob A x · β .N-ob A x
N-ob ((snd (F-ob 𝓞 X) CommRingStr.· α) β) A x = α .N-ob A x · β .N-ob A x
where instance _ = A .snd
N-hom ((snd (F-ob Γ X) CommRingStr.· α) β) {x = A} {y = B} φ = funExt path
N-hom ((snd (F-ob 𝓞 X) CommRingStr.· α) β) {x = A} {y = B} φ = funExt path
where
instance
_ = A .snd
@@ -117,9 +121,9 @@ module _ {ℓ : Level} where
≡⟨ sym (φ .snd .pres· _ _) ⟩
φ .fst (α .N-ob A x · β .N-ob A x) ∎

N-ob ((CommRingStr.- snd (F-ob Γ X)) α) A x = - α .N-ob A x
N-ob ((CommRingStr.- snd (F-ob 𝓞 X)) α) A x = - α .N-ob A x
where instance _ = A .snd
N-hom ((CommRingStr.- snd (F-ob Γ X)) α) {x = A} {y = B} φ = funExt path
N-hom ((CommRingStr.- snd (F-ob 𝓞 X)) α) {x = A} {y = B} φ = funExt path
where
instance
_ = A .snd
@@ -129,7 +133,7 @@ module _ {ℓ : Level} where
- φ .fst (α .N-ob A x) ≡⟨ sym (φ .snd .pres- _) ⟩
φ .fst (- α .N-ob A x) ∎

CommRingStr.isCommRing (snd (F-ob Γ X)) = makeIsCommRing
CommRingStr.isCommRing (snd (F-ob 𝓞 X)) = makeIsCommRing
isSetNatTrans
(λ _ _ _ → makeNatTransPath (funExt₂ λ A _ → A .snd .CommRingStr.+Assoc _ _ _))
(λ _ → makeNatTransPath (funExt₂ λ A _ → A .snd .CommRingStr.+IdR _))
@@ -141,19 +145,24 @@ module _ {ℓ : Level} where
(λ _ _ → makeNatTransPath (funExt₂ λ A _ → A .snd .CommRingStr.·Comm _ _))

-- action on natural transformations
fst (F-hom Γ α) = α ●ᵛ_
pres0 (snd (F-hom Γ α)) = makeNatTransPath (funExt₂ λ _ _ → refl)
pres1 (snd (F-hom Γ α)) = makeNatTransPath (funExt₂ λ _ _ → refl)
pres+ (snd (F-hom Γ α)) _ _ = makeNatTransPath (funExt₂ λ _ _ → refl)
pres· (snd (F-hom Γ α)) _ _ = makeNatTransPath (funExt₂ λ _ _ → refl)
pres- (snd (F-hom Γ α)) _ = makeNatTransPath (funExt₂ λ _ _ → refl)
fst (F-hom 𝓞 α) = α ●ᵛ_
pres0 (snd (F-hom 𝓞 α)) = makeNatTransPath (funExt₂ λ _ _ → refl)
pres1 (snd (F-hom 𝓞 α)) = makeNatTransPath (funExt₂ λ _ _ → refl)
pres+ (snd (F-hom 𝓞 α)) _ _ = makeNatTransPath (funExt₂ λ _ _ → refl)
pres· (snd (F-hom 𝓞 α)) _ _ = makeNatTransPath (funExt₂ λ _ _ → refl)
pres- (snd (F-hom 𝓞 α)) _ = makeNatTransPath (funExt₂ λ _ _ → refl)

-- functoriality of 𝓞
F-id 𝓞 = RingHom≡ (funExt λ _ → makeNatTransPath (funExt₂ λ _ _ → refl))
F-seq 𝓞 _ _ = RingHom≡ (funExt λ _ → makeNatTransPath (funExt₂ λ _ _ → refl))

-- functoriality of Γ
F-id Γ = RingHom≡ (funExt λ _ → makeNatTransPath (funExt₂ λ _ _ → refl))
F-seq Γ _ _ = RingHom≡ (funExt λ _ → makeNatTransPath (funExt₂ λ _ _ → refl))


-- we get an adjunction Γ ⊣ Sp modulo size issues
-- There is an adjunction 𝓞 ⊣ᵢ Sp
-- (relative to the inclusion i : CommRing ℓ → CommRing (ℓ+1))
-- between the "global sections functor" 𝓞
-- and the fully-faithful embedding of affines Sp,
-- whose counit is a natural isomorphism
module AdjBij where

open Functor
@@ -162,7 +171,7 @@ module AdjBij where
open IsRingHom

private module _ {A : CommRing ℓ} {X : ℤFunctor {ℓ}} where
_♭ : CommRingHom A (Γ .F-ob X) → X ⇒ Sp .F-ob A
_♭ : CommRingHom A (𝓞 .F-ob X) → X ⇒ Sp .F-ob A
fst (N-ob (φ ♭) B x) a = φ .fst a .N-ob B x

pres0 (snd (N-ob (φ ♭) B x)) = cong (λ y → y .N-ob B x) (φ .snd .pres0)
@@ -175,7 +184,7 @@ module AdjBij where


-- the other direction is just precomposition modulo Yoneda
_♯ : X ⇒ Sp .F-ob A → CommRingHom A (Γ .F-ob X)
_♯ : X ⇒ Sp .F-ob A → CommRingHom A (𝓞 .F-ob X)
fst (α ♯) a = α ●ᵛ yonedaᴾ 𝔸¹ A .inv a

pres0 (snd (α ♯)) = makeNatTransPath (funExt₂ λ B x → α .N-ob B x .snd .pres0)
@@ -189,42 +198,45 @@ module AdjBij where
♭♯Id : ∀ (α : X ⇒ Sp .F-ob A) → ((α ♯) ♭) ≡ α
♭♯Id _ = makeNatTransPath (funExt₂ λ _ _ → RingHom≡ (funExt (λ _ → refl)))

♯♭Id : ∀ (φ : CommRingHom A (Γ .F-ob X)) → ((φ ♭) ♯) ≡ φ
♯♭Id : ∀ (φ : CommRingHom A (𝓞 .F-ob X)) → ((φ ♭) ♯) ≡ φ
♯♭Id _ = RingHom≡ (funExt λ _ → makeNatTransPath (funExt₂ λ _ _ → refl))

Γ⊣SpIso : {A : CommRing ℓ} {X : ℤFunctor {ℓ}}
→ Iso (CommRingHom A (Γ .F-ob X)) (X ⇒ Sp .F-ob A)
fun Γ⊣SpIso = _♭
inv Γ⊣SpIso = _♯
rightInv Γ⊣SpIso = ♭♯Id
leftInv Γ⊣SpIso = ♯♭Id

Γ⊣SpNatℤFunctor : {A : CommRing ℓ} {X Y : ℤFunctor {ℓ}} (α : X ⇒ Sp .F-ob A) (β : Y ⇒ X)
→ (β ●ᵛ α) ♯ ≡ (Γ .F-hom β) ∘cr (α ♯)
Γ⊣SpNatℤFunctor _ _ = RingHom≡ (funExt (λ _ → makeNatTransPath (funExt₂ (λ _ _ → refl))))
-- we get a relative adjunction 𝓞 ⊣ᵢ Sp
-- with respect to the inclusion i : CommRing ℓ → CommRing (ℓ+1)
𝓞⊣SpIso : {A : CommRing ℓ} {X : ℤFunctor {ℓ}}
MatthiasHu marked this conversation as resolved.
Show resolved Hide resolved
→ Iso (CommRingHom A (𝓞 .F-ob X)) (X ⇒ Sp .F-ob A)
fun 𝓞⊣SpIso = _♭
inv 𝓞⊣SpIso = _♯
rightInv 𝓞⊣SpIso = ♭♯Id
leftInv 𝓞⊣SpIso = ♯♭Id

Γ⊣SpNatCommRing : {X : ℤFunctor {ℓ}} {A B : CommRing ℓ}
(φ : CommRingHom A (Γ .F-ob X)) (ψ : CommRingHom B A)
𝓞⊣SpNatℤFunctor : {A : CommRing ℓ} {X Y : ℤFunctor {ℓ}} (α : X ⇒ Sp .F-ob A) (β : Y ⇒ X)
→ (β ●ᵛ α) ♯ ≡ (𝓞 .F-hom β) ∘cr (α ♯)
𝓞⊣SpNatℤFunctor _ _ = RingHom≡ (funExt (λ _ → makeNatTransPath (funExt₂ (λ _ _ → refl))))

𝓞⊣SpNatCommRing : {X : ℤFunctor {ℓ}} {A B : CommRing ℓ}
(φ : CommRingHom A (𝓞 .F-ob X)) (ψ : CommRingHom B A)
→ (φ ∘cr ψ) ♭ ≡ (φ ♭) ●ᵛ Sp .F-hom ψ
Γ⊣SpNatCommRing _ _ = makeNatTransPath (funExt₂ λ _ _ → RingHom≡ (funExt (λ _ → refl)))
𝓞⊣SpNatCommRing _ _ = makeNatTransPath (funExt₂ λ _ _ → RingHom≡ (funExt (λ _ → refl)))

-- the counit is an equivalence
private
ε : (A : CommRing ℓ) → CommRingHom A ((Γ ∘F Sp) .F-ob A)
ε : (A : CommRing ℓ) → CommRingHom A ((𝓞 ∘F Sp) .F-ob A)
ε A = (idTrans (Sp .F-ob A)) ♯

Γ⊣SpCounitEquiv : (A : CommRing ℓ) → CommRingEquiv A ((Γ ∘F Sp) .F-ob A)
fst (Γ⊣SpCounitEquiv A) = isoToEquiv theIso
𝓞⊣SpCounitEquiv : (A : CommRing ℓ) → CommRingEquiv A ((𝓞 ∘F Sp) .F-ob A)
fst (𝓞⊣SpCounitEquiv A) = isoToEquiv theIso
where
theIso : Iso (A .fst) ((Γ ∘F Sp) .F-ob A .fst)
theIso : Iso (A .fst) ((𝓞 ∘F Sp) .F-ob A .fst)
fun theIso = ε A .fst
inv theIso = yonedaᴾ 𝔸¹ A .fun
rightInv theIso α = ℤFUNCTOR .⋆IdL _ ∙ yonedaᴾ 𝔸¹ A .leftInv α
leftInv theIso a = path -- I get yellow otherwise
where
path : yonedaᴾ 𝔸¹ A .fun ((idTrans (Sp .F-ob A)) ●ᵛ yonedaᴾ 𝔸¹ A .inv a) ≡ a
path = cong (yonedaᴾ 𝔸¹ A .fun) (ℤFUNCTOR .⋆IdL _) ∙ yonedaᴾ 𝔸¹ A .rightInv a
snd (Γ⊣SpCounitEquiv A) = ε A .snd
snd (𝓞⊣SpCounitEquiv A) = ε A .snd


-- Affine schemes
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

∃[ A ∈ CommRing ℓ ] NatIso (Sp .F-ob A) X could just be a sigma type,because this will always be a subsingleton.

@@ -239,15 +251,15 @@ module _ {ℓ : Level} where

-- The unit is an equivalence iff the ℤ-functor is affine.
-- Unfortunately, we can't give a natural transformation
-- X ⇒ Sp (Γ X), because the latter ℤ-functor lives in a higher universe.
-- X ⇒ Sp (𝓞 X), because the latter ℤ-functor lives in a higher universe.
-- We can however give terms that look just like the unit,
-- giving us an alternative def. of affine ℤ-functors
private module AffineDefs {ℓ : Level} where
open Functor
open NatTrans
open Iso
open IsRingHom
η : (X : ℤFunctor) (A : CommRing ℓ) → X .F-ob A .fst → CommRingHom (Γ .F-ob X) A
η : (X : ℤFunctor) (A : CommRing ℓ) → X .F-ob A .fst → CommRingHom (𝓞 .F-ob X) A
fst (η X A x) α = α .N-ob A x
pres0 (snd (η X A x)) = refl
pres1 (snd (η X A x)) = refl
@@ -262,7 +274,7 @@ private module AffineDefs {ℓ : Level} where

-- can only state equality on object part, but that would be enough
ηHom : {X Y : ℤFunctor} (α : X ⇒ Y) (A : CommRing ℓ) (x : X .F-ob A .fst)
→ η Y A (α .N-ob A x) ≡ η X A x ∘cr Γ .F-hom α
→ η Y A (α .N-ob A x) ≡ η X A x ∘cr 𝓞 .F-hom α
ηHom _ _ _ = RingHom≡ refl

isAffine' : (X : ℤFunctor) → Type (ℓ-suc ℓ)
@@ -276,6 +288,7 @@ module _ {ℓ : Level} where
open Iso
open Functor
open NatTrans
open NatIso
open DistLatticeStr ⦃...⦄
open CommRingStr ⦃...⦄
open IsRingHom
@@ -284,14 +297,14 @@ module _ {ℓ : Level} where
open ZarLatUniversalProp

-- the Zariski lattice classifying compact open subobjects
𝓛 : ℤFunctor {ℓ = ℓ}
F-ob 𝓛 A = ZL A , SQ.squash/
F-hom 𝓛 φ = inducedZarLatHom φ .fst
F-id 𝓛 {A} = cong fst (inducedZarLatHomId A)
F-seq 𝓛 φ ψ = cong fst (inducedZarLatHomSeq φ ψ)
ZarLatFun : ℤFunctor {ℓ = ℓ}
F-ob ZarLatFun A = ZL A , SQ.squash/
F-hom ZarLatFun φ = inducedZarLatHom φ .fst
F-id ZarLatFun {A} = cong fst (inducedZarLatHomId A)
F-seq ZarLatFun φ ψ = cong fst (inducedZarLatHomSeq φ ψ)

CompactOpen : ℤFunctor → Type (ℓ-suc ℓ)
CompactOpen X = X ⇒ 𝓛
CompactOpen X = X ⇒ ZarLatFun

-- the induced subfunctor
⟦_⟧ᶜᵒ : {X : ℤFunctor} (U : CompactOpen X) → ℤFunctor
@@ -305,9 +318,9 @@ module _ {ℓ : Level} where
_ = B .snd
open IsLatticeHom
path : U .N-ob B (X .F-hom φ x) ≡ D B 1r
path = U .N-ob B (X .F-hom φ x) ≡⟨ funExt⁻ (U .N-hom φ) x ⟩
𝓛 .F-hom φ (U .N-ob A x) ≡⟨ cong (𝓛 .F-hom φ) Ux≡D1 ⟩
𝓛 .F-hom φ (D A 1r) ≡⟨ inducedZarLatHom φ .snd .pres1 ⟩
path = U .N-ob B (X .F-hom φ x) ≡⟨ funExt⁻ (U .N-hom φ) x ⟩
ZarLatFun .F-hom φ (U .N-ob A x) ≡⟨ cong (ZarLatFun .F-hom φ) Ux≡D1 ⟩
ZarLatFun .F-hom φ (D A 1r) ≡⟨ inducedZarLatHom φ .snd .pres1 ⟩
D B 1r ∎
F-id (⟦_⟧ᶜᵒ {X = X} U) = funExt (λ x → Σ≡Prop (λ _ → squash/ _ _)
(funExt⁻ (X .F-id) (x .fst)))
@@ -324,7 +337,7 @@ module _ {ℓ : Level} where
CompOpenDistLattice : Functor ℤFUNCTOR (DistLatticesCategory {ℓ = ℓ-suc ℓ} ^op)
fst (F-ob CompOpenDistLattice X) = CompactOpen X

-- lattice structure induce by internal lattice object 𝓛
-- lattice structure induce by internal lattice object ZarLatFun
N-ob (DistLatticeStr.0l (snd (F-ob CompOpenDistLattice X))) A _ = 0l
where instance _ = ZariskiLattice A .snd
N-hom (DistLatticeStr.0l (snd (F-ob CompOpenDistLattice X))) _ = funExt λ _ → refl
@@ -348,12 +361,12 @@ module _ {ℓ : Level} where
_ = ZariskiLattice A .snd
_ = ZariskiLattice B .snd
path : ∀ x → U .N-ob B (X .F-hom φ x) ∨l V .N-ob B (X .F-hom φ x)
𝓛 .F-hom φ (U .N-ob A x ∨l V .N-ob A x)
ZarLatFun .F-hom φ (U .N-ob A x ∨l V .N-ob A x)
path x = U .N-ob B (X .F-hom φ x) ∨l V .N-ob B (X .F-hom φ x)
≡⟨ cong₂ _∨l_ (funExt⁻ (U .N-hom φ) x) (funExt⁻ (V .N-hom φ) x) ⟩
𝓛 .F-hom φ (U .N-ob A x) ∨l 𝓛 .F-hom φ (V .N-ob A x)
ZarLatFun .F-hom φ (U .N-ob A x) ∨l ZarLatFun .F-hom φ (V .N-ob A x)
≡⟨ sym (inducedZarLatHom φ .snd .pres∨l _ _) ⟩
𝓛 .F-hom φ (U .N-ob A x ∨l V .N-ob A x) ∎
ZarLatFun .F-hom φ (U .N-ob A x ∨l V .N-ob A x) ∎

N-ob ((snd (F-ob CompOpenDistLattice X) DistLatticeStr.∧l U) V) A x = U .N-ob A x ∧l V .N-ob A x
where instance _ = ZariskiLattice A .snd
@@ -363,12 +376,12 @@ module _ {ℓ : Level} where
_ = ZariskiLattice A .snd
_ = ZariskiLattice B .snd
path : ∀ x → U .N-ob B (X .F-hom φ x) ∧l V .N-ob B (X .F-hom φ x)
𝓛 .F-hom φ (U .N-ob A x ∧l V .N-ob A x)
ZarLatFun .F-hom φ (U .N-ob A x ∧l V .N-ob A x)
path x = U .N-ob B (X .F-hom φ x) ∧l V .N-ob B (X .F-hom φ x)
≡⟨ cong₂ _∧l_ (funExt⁻ (U .N-hom φ) x) (funExt⁻ (V .N-hom φ) x) ⟩
𝓛 .F-hom φ (U .N-ob A x) ∧l 𝓛 .F-hom φ (V .N-ob A x)
ZarLatFun .F-hom φ (U .N-ob A x) ∧l ZarLatFun .F-hom φ (V .N-ob A x)
≡⟨ sym (inducedZarLatHom φ .snd .pres∧l _ _) ⟩
𝓛 .F-hom φ (U .N-ob A x ∧l V .N-ob A x) ∎
ZarLatFun .F-hom φ (U .N-ob A x ∧l V .N-ob A x) ∎

DistLatticeStr.isDistLattice (snd (F-ob CompOpenDistLattice X)) = makeIsDistLattice∧lOver∨l
isSetNatTrans
@@ -399,6 +412,18 @@ module _ {ℓ : Level} where
(funExt λ _ → makeNatTransPath (funExt₂ λ _ _ → refl))


module _ (X : ℤFunctor) where
open isIso
private instance _ = (CompOpenDistLattice .F-ob X) .snd

compOpenTopNatIso : NatIso X ⟦ 1l ⟧ᶜᵒ
N-ob (trans compOpenTopNatIso) _ φ = φ , refl
N-hom (trans compOpenTopNatIso) _ = funExt λ _ → Σ≡Prop (λ _ → squash/ _ _) refl
inv (nIso compOpenTopNatIso B) = fst
sec (nIso compOpenTopNatIso B) = funExt λ _ → Σ≡Prop (λ _ → squash/ _ _) refl
ret (nIso compOpenTopNatIso B) = funExt λ _ → refl


module _ (X : ℤFunctor) where
open Join (CompOpenDistLattice .F-ob X)
open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice (CompOpenDistLattice .F-ob X)))
@@ -415,7 +440,6 @@ module _ {ℓ : Level} where

hasAffineCover : Type (ℓ-suc ℓ)
hasAffineCover = ∥ AffineCover ∥₁
-- TODO: A ℤ-functor is a qcqs-scheme if it is a Zariski sheaf and has an affine cover

-- the structure sheaf
private COᵒᵖ = (DistLatticeCategory (CompOpenDistLattice .F-ob X)) ^op
@@ -443,8 +467,32 @@ module _ {ℓ : Level} where
compOpenInclSeq _ _ = makeNatTransPath
(funExt₂ (λ _ _ → Σ≡Prop (λ _ → squash/ _ _) refl))

𝓞 : Functor COᵒᵖ (CommRingsCategory {ℓ = ℓ-suc ℓ})
F-ob 𝓞 U = Γ .F-ob ⟦ U ⟧ᶜᵒ
F-hom 𝓞 U≥V = Γ .F-hom (compOpenIncl U≥V)
F-id 𝓞 = cong (Γ .F-hom) compOpenInclId ∙ Γ .F-id
F-seq 𝓞 _ _ = cong (Γ .F-hom) (compOpenInclSeq _ _) ∙ Γ .F-seq _ _
strDLSh : Functor COᵒᵖ (CommRingsCategory {ℓ = ℓ-suc ℓ})
F-ob strDLSh U = 𝓞 .F-ob ⟦ U ⟧ᶜᵒ
F-hom strDLSh U≥V = 𝓞 .F-hom (compOpenIncl U≥V)
F-id strDLSh = cong (𝓞 .F-hom) compOpenInclId ∙ 𝓞 .F-id
F-seq strDLSh _ _ = cong (𝓞 .F-hom) (compOpenInclSeq _ _) ∙ 𝓞 .F-seq _ _

-- the canonical one element affine cover of a representable
module _ (A : CommRing ℓ) where
open AffineCover
private instance _ = (CompOpenDistLattice ⟅ Sp ⟅ A ⟆ ⟆) .snd

singlAffineCover : AffineCover (Sp .F-ob A)
n singlAffineCover = 1
U singlAffineCover zero = 1l
covers singlAffineCover = ∨lRid _
isAffineU singlAffineCover zero = ∣ A , compOpenTopNatIso (Sp ⟅ A ⟆) ∣₁


-- qcqs-schemes as Zariski sheaves (local ℤ-functors) with an affine cover in the sense above
isLocal : ℤFunctor → Type (ℓ-suc ℓ)
isLocal X = isSheaf zariskiCoverage X

isQcQsScheme : ℤFunctor → Type (ℓ-suc ℓ)
isQcQsScheme X = isLocal X × hasAffineCover X

-- affine schemes are qcqs-schemes
isQcQsSchemeAffine : ∀ (A : CommRing ℓ) → isQcQsScheme (Sp .F-ob A)
fst (isQcQsSchemeAffine A) = isSubcanonicalZariskiCoverage A
snd (isQcQsSchemeAffine A) = ∣ singlAffineCover A ∣₁
Loading