Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Proof of Blakers-Massey Theorem #613

Merged
merged 20 commits into from
Nov 11, 2021
Merged
Show file tree
Hide file tree
Changes from 19 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions Cubical/Foundations/HLevels.agda
Original file line number Diff line number Diff line change
Expand Up @@ -409,6 +409,10 @@ isOfHLevelΠ (suc (suc (suc (suc (suc n))))) h f g p q P Q R S =
(cong funExt⁻ P) (cong funExt⁻ Q)
(cong (cong funExt⁻) R) (cong (cong funExt⁻) S))

isOfHLevelΠ2 : (n : HLevel) → ((x : A) → (y : B x) → isOfHLevel n (C x y))
→ isOfHLevel n ((x : A) → (y : B x) → C x y)
isOfHLevelΠ2 n f = isOfHLevelΠ n (λ x → isOfHLevelΠ n (f x))

isContrΠ : (h : (x : A) → isContr (B x)) → isContr ((x : A) → B x)
isContrΠ = isOfHLevelΠ 0

Expand Down
13 changes: 13 additions & 0 deletions Cubical/Foundations/Prelude.agda
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ module Cubical.Foundations.Prelude where
open import Cubical.Core.Primitives public

infixr 30 _∙_
infixr 30 _∙₂_
infix 3 _∎
infixr 2 _≡⟨_⟩_
infixr 2.5 _≡⟨_⟩≡⟨_⟩_
Expand Down Expand Up @@ -353,6 +354,18 @@ Square :
→ Type _
Square a₀₋ a₁₋ a₋₀ a₋₁ = PathP (λ i → a₋₀ i ≡ a₋₁ i) a₀₋ a₁₋

-- vertical composition of squares
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@aljungstrom Didn't you need something like this in your very big PR?

_∙₂_ :
{a₀₀ a₀₁ a₀₂ : A} {a₀₋ : a₀₀ ≡ a₀₁} {b₀₋ : a₀₁ ≡ a₀₂}
{a₁₀ a₁₁ a₁₂ : A} {a₁₋ : a₁₀ ≡ a₁₁} {b₁₋ : a₁₁ ≡ a₁₂}
{a₋₀ : a₀₀ ≡ a₁₀} {a₋₁ : a₀₁ ≡ a₁₁} {a₋₂ : a₀₂ ≡ a₁₂}
(p : Square a₀₋ a₁₋ a₋₀ a₋₁) (q : Square b₀₋ b₁₋ a₋₁ a₋₂)
→ Square (a₀₋ ∙ b₀₋) (a₁₋ ∙ b₁₋) a₋₀ a₋₂
_∙₂_ {a₋₀ = a₋₀} p q i j =
hcomp (λ k → λ { (j = i0) → a₋₀ i
; (j = i1) → q i k })
(p i j)

isSet' : Type ℓ → Type ℓ
isSet' A =
{a₀₀ a₀₁ : A} (a₀₋ : a₀₀ ≡ a₀₁)
Expand Down
36 changes: 36 additions & 0 deletions Cubical/HITs/Truncation/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -258,6 +258,34 @@ Iso.rightInv (univTrunc (suc n) {B , lev}) b = refl
Iso.leftInv (univTrunc (suc n) {B , lev}) b = funExt (elim (λ x → isOfHLevelPath _ lev _ _)
λ a → refl)

-- some useful properties of recursor

recUniq : {n : HLevel}
→ (h : isOfHLevel n B)
→ (g : A → B)
→ (x : A)
→ rec h g ∣ x ∣ₕ ≡ g x
recUniq {n = zero} h g x = h .snd (g x)
recUniq {n = suc n} _ _ _ = refl

∘rec : ∀{ℓ''} {n : HLevel}{C : Type ℓ''}
→ (h : isOfHLevel n B)
→ (h' : isOfHLevel n C)
→ (g : A → B)
→ (f : B → C)
→ (x : hLevelTrunc n A)
→ rec h' (f ∘ g) x ≡ f (rec h g x)
∘rec {n = zero} h h' g f x = h' .snd (f (rec h g x))
∘rec {n = suc n} h h' g f = elim (λ _ → isOfHLevelPath _ h' _ _) (λ _ → refl)

recId : {n : HLevel}
→ (f : A → hLevelTrunc n A)
→ ((x : A) → f x ≡ ∣ x ∣ₕ)
→ rec (isOfHLevelTrunc _) f ≡ idfun _
recId {n = n} f h i x =
elim {B = λ a → rec (isOfHLevelTrunc _) f a ≡ a}
(λ _ → isOfHLevelTruncPath) (λ a → recUniq {n = n} (isOfHLevelTrunc _) f a ∙ h a) x i

-- functorial action

map : {n : HLevel} {B : Type ℓ'} (g : A → B)
Expand Down Expand Up @@ -528,3 +556,11 @@ Iso.rightInv (truncOfΣIso (suc n)) =
λ b → refl)
Iso.leftInv (truncOfΣIso (suc n)) =
elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ {(a , b) → refl}

{- transport along family of truncations -}

transportTrunc : {n : HLevel}{p : A ≡ B}
→ (a : A)
→ transport (λ i → hLevelTrunc n (p i)) ∣ a ∣ₕ ≡ ∣ transport (λ i → p i) a ∣ₕ
transportTrunc {n = zero} a = refl
transportTrunc {n = suc n} a = refl
Loading