Skip to content

Offline Signature Verification Web Application System (Computer Systems Engineering Graduation Project 2021)

Notifications You must be signed in to change notification settings

ahmedatef1610/INKuisitor-Machine-Learning-Model

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

INKuisitor

Offline Signature Verification Web Application System (Computer Systems Engineering Graduation Project 2021)

Offline Signature Verification model using deep learning methods to authinticate identity by distinguishing between signatures.

The model have been created using One Shot Learning technique and a Siamese neural netowrk. One of the goals that we had in our minds before desigining the model was to not make the model language or regional exclusive. So, several datasets including multiple languages were used to train the model.

  1. Data Acquisition

For the datasets, the ICDAR2011 (Dutch), Kaggle (English), Cedar (English) and BHSig260 (Bengali, Hindi) have been used to develop our model.

  1. Data Preprocessing Code

    1- Noise Removal: Gaussian blur technique was used to remove the noise in the dataset samples image image

    2- Binarization

    image

    3- Finding Signature Contour

    image

    4- Signature Cropping and Resizing

    image

    5- Final Binraization

    image

  2. Model Architecture Code - model weights - model weights (h5)

Siamese network is considered as an implementation of One-Shot learning technique, it consists of parallel convolution networks, could be two or more.The model evaluates the two input images by finding the similarity score between the two images between 0 and 1 clarifying whether the test image is genuine or forged based on the similarity score.

image

The CNN type used in this project is a Dense 201 type netowrk.

image

  1. Machine Learning Model's Block Diagram

image

  1. Results and Evaluation Code
  • The BHSig260 (Hindi) dataset gave accuracy of 84.53062248995984 %

image

  • The BHSig260 (Bengali) dataset gave accuracy of 88.214859437751 %

image

  • The ICDAR2011 (Dutch) dataset gave accuracy of 89.49152542372882 %

image

  • The Kaggle (English) dataset gave accuracy of 89.80952380952381 %

image

  • The Cedar (English) dataset gave accuracy of 89.29364063166881 %

image


About

Offline Signature Verification Web Application System (Computer Systems Engineering Graduation Project 2021)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published