This is an implementation of paper (Aspect-Level Deep Collaborative Filtering via Heterogeneous Information Networks).
Please refer our paper if you use this code and the bibtex of this paper is:
@inproceedings{han2018aspect,
title={Aspect-Level Deep Collaborative Filtering via Heterogeneous Information Networks.},
author="Han, Xiaotian and Shi, Chuan and Wang, Senzhang and Philip, S Yu and Song, Li",
booktitle={IJCAI},
pages={3393--3399},
year={2018}
}
- Python 3.6
- Tensorflow 1.2.1
- docopt 0.6.2
- numpy 1.13.3
- sklearn 0.18.1
- pandas 0.20.1
- scipy 1.0.0
- unzip dataset.7z
- Compute the aspect-level similarity matrix with the matlab code
- Run the model with the python code acf.py
example:
python ./acf.py ../dataset/amazon/ amovie --mat "U.UIU,I.IUI,U.UICIU,I.ICI" --epochs 40 --last_layer_size 64 --batch_size 1024 --num_of_neg 10 --learn_rate 0.00005 --num_of_layers 2 --mat_select median
Parameter | Note |
---|---|
--mat | sim_mat [default: ""] |
--epochs | Embedding size [default: 40] |
--last_layer_size | The number of iterations [default: 64] |
--num_of_layers | The number of layers [default: 2] |
--num_of_neg | The number of negs [default: 2] |
--learn_rate | The learn_rate [default: 0.00005] |
--batch_size | batch_size [default: 1024] |
--mat_select | mat select type [default: median] |
--merge | batch_size [default: attention] |
For more information, visit the webpage http://www.shichuan.org