This source includes nucleui segmentation code using Mask-RCNN.
Code was implemented on ubuntu 16.04, python3.5, CUDA9.0, and tensorflow1.12.0.
Download preprocessed images for segmentation
mv downloaded_images MASK_RCNN_ROOT/datasets/nucleus
(optional) Download original nucleus dataset
Download pretrained model
mv downloaded_model MASK_RCNN_ROOT/logs/nucleus20190130T0908/
To make input data in Mask-RCNN, a python file below separates overrapping mask in a original mask image using erosion and dilation algorithm (keneral size 7x7).
Also, it reduces image size by half (1024x1024) and changes format from tiff to jpg to reduce memory load
cd MASK_RCNN_ROOT/samples/nucleus
python3 make_patch(erosion-dliation).py
cd MASK_RCNN_ROOT/samples/nucleus
python3 nucleus_training.py
python3 nucleus_testing.py
separate image into several parts, segment indepentantly.
@misc{matterport_maskrcnn_2017,
title={Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow},
author={Waleed Abdulla},
year={2017},
publisher={Github},
journal={GitHub repository},
howpublished={\url{https://github.com/matterport/Mask_RCNN}},
}