Skip to content
/ SG-SSC Public

The official repo for “Semantic-guided Semantic Scene Completion”

Notifications You must be signed in to change notification settings

aipixel/SG-SSC

Repository files navigation

2D Semantic-guided Semantic Scene Completion

Introduction

This repository contains the source code for the paper 2D Semantic-guided Semantic Scene Completion

Changelog 🔥

  • [2024/07/16] The models and code are released.
  • [2024/04/15] The repo is created.

Installation 📥

Moreover, this repository introduces an integrated Semantic Scene Completion Benchmark implemented in Python 3.8, PyTorch 1.12 and CUDA 11.3.

  1. You can use the following command to install PyTorch with CUDA 11.3.
conda create -n ssc python=3.8
conda activate ssc
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
  1. Install dependencies:
- imageio 2.19.1
- Pillow 9.1.0
- scikit-image 0.19.3
- scikit-learn 0.24.2
- scipy 1.7.0
- tensorboard 2.10.0
- tqdm 4.51.0
- pandas 1.3.0
- timm 0.6.11
- torchvision 0.13.1
- h5py 3.3.0
- opencv-python 4.8.0.76
- matplotlib 3.4.2
- PyYAML 5.4.1
  1. Compile the CUDA code for data preparation
cd src
nvcc --ptxas-options=-v --compiler-options '-fPIC' -o lib_preproc.so --shared lib_preproc.cu

Datasets and Pretrained Models 🛢️

  1. We use the NYU, NYUCAD, and SemanticKITTI datasets in our experiments, which are available below:

Please download the datasets to the folder ./data. If you need to modify the data path, please modify the configuration in paths.conf.

  1. The pretrained models are available as below.

Inference 🚩

We provide an example to use our code.

  1. Please download the pretrained models to the folder ./weights.

  2. Use the feature_preprocess.py script to preprocess the desired datasets. Example:

python feature_preprocess.py --dataset NYUCAD --weights NYUCAD_FF
  1. Use the eval_ssc.py script for calculating metrics. Example:
python eval_ssc.py --dataset NYUCAD --weights NYUCAD_SSC

Training 👩🏽‍💻

  1. Use the train_feature_fusion.py script to pre-train the feature fusion of the desired dataset. Example:
python train_feature_fusion.py --dataset NYUCAD --batch_size 4

Then, use the feature_preprocess.py script to preprocess the desired datasets.

  1. Use the train_ssc.py script to train the desired dataset. Example:
python train_ssc.py --dataset NYUCAD --batch_size 4

License

This project is licensed under MIT License.

About

The official repo for “Semantic-guided Semantic Scene Completion”

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published