Skip to content

ajvish91/finalhmm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Documentation:

Content:

  1. Installation
  2. Download dataset
  3. Train and Test HMM
  4. Start Server
  5. Output

1 Installation

1.1 Copy contents

	Copy contents onto local disk

1.2 Install Python 2.7 

	https://www.python.org/download/releases/2.7/

1.3 Install OpenCV 2.7, seqlearn

	OpenCV 2.7

	Windows: http://docs.opencv.org/2.4/doc/tutorials/introduction/windows_install/windows_install.html

	Linux: http://docs.opencv.org/2.4/doc/tutorials/introduction/linux_install/linux_install.html

1.4 Install PIP and its libraries

	numpy, scipy, sklearn, nltk, gensim, wordcloud, collections, PIL

	seqlearn

		Clone repository: https://github.com/larsmans/seqlearn

		Get NumPy >=1.6, SciPy >=0.11, Cython >=0.20.2 and a recent version of scikit-learn. Then issue:

		python setup.py install
		to install seqlearn.

		If you want to use seqlearn from its source directory without installing, you have to compile first:

		python setup.py build_ext --inplace

1.5 Install NodeJS

	https://nodejs.org/en/download/package-manager/

1.6 Install NodeJS packages

	Go to root directory of project and type "npm install"

2 Datasets

2.1 Register http://www.fki.inf.unibe.ch/DBs/iamDB/iLogin/index.php

2.2 Download http://www.fki.inf.unibe.ch/DBs/iamDB/data/forms (FormsA-E, FormsE-H, FormsI-Z

2.3 Download http://www.fki.inf.unibe.ch/DBs/iamDB/data/words

2.4 Run "python processdata.py" in "python" folder

3 Train and Test HMM

3.1 Navigate to "python" folder

3.2 Type "python train.py"

3.3 Type "python test.py"

4 Start Server

"node server.js"

5 Output

Open browser and navigate to localhost:3000

Upload a Handwritten document with multiple lines and click on "Extract"

Navigate to different tabs (Beautify, Recognize, Summarize) and see the desired result

5.1 Training output:
	The output is a trained classifier which will be used in the web interface

5.2 Beautification output:
	Can be found in the "Beautify"	

5.3 Recognition output:
	Can be found in the "Recognize". Depends on training data.

5.4 Summarize output:
	Can be found in the "Summarize". Here, the category of text must be selected.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published