Skip to content

Commit

Permalink
Formatting
Browse files Browse the repository at this point in the history
  • Loading branch information
triangle-man committed Apr 17, 2024
1 parent cb9ee6f commit a9d88d5
Showing 1 changed file with 11 additions and 5 deletions.
16 changes: 11 additions & 5 deletions notes/optimisation.tex
Original file line number Diff line number Diff line change
@@ -1,10 +1,14 @@
\documentclass[11pt, a4paper]{article}
\documentclass[10pt, twocolumn, a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{beton}
\usepackage{eulervm}
\usepackage{amsmath}
\usepackage{bm}
\usepackage{microtype}
\usepackage[left=1cm, right=1cm]{geometry}
\setlength{\columnsep}{1cm}
\usepackage[medium, compact]{titlesec}
\DeclareFontSeriesDefault[rm]{bf}{sbc}
% \usepackage{amssymb}
%% Turing grid is 21 columns (of 1cm if we are using A4)
Expand All @@ -19,15 +23,17 @@
\DeclareMathOperator*{\argmin}{arg\,min}
\begin{document}
\maketitle
\raggedright

Here's a classic problem. We are given a real-valued function on some
space $X$, say $f\colon X\to \setR$, and we are to find the point where
$f$ is minimised (if there is one). That is, we are to find
$x_\text{min}$ such that $f(x_\text{min}) < f(x)$ for every other $x\in
X$ that is not~$x_\text{min}$. That is, find
space $X$, say $f\colon X\to \setR$, and we are to find the point, $x =
x_\text{min}$, where $f(x)$ attains its minimum value (if there is
one). That is, we are to compute
\begin{equation*}
x_\text{min} = \argmin_{x\in X} f(x).
\end{equation*}




\end{document}

0 comments on commit a9d88d5

Please sign in to comment.