Skip to content

Commit

Permalink
Merge branch 'main' of github.com:alan-turing-institute/hut23-linear-…
Browse files Browse the repository at this point in the history
…algebra
  • Loading branch information
triangle-man committed Jul 12, 2024
2 parents e84aaab + 2aa5056 commit aa06b7f
Showing 1 changed file with 145 additions and 13 deletions.
158 changes: 145 additions & 13 deletions reference/all-the-rules-we-know.tex
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
\newcommand{\set}[1]{\mathbold{#1}}
\newcommand{\imag}{\mathrm{i}}
\newcommand{\card}[1]{\##1}
\newcommand{\transpose}[1]{{#1}^{\rm t}}
\def\R{\mathbb{R}}
\def\C{\mathbb{C}}
\def\F{\mathbb{F}}
Expand Down Expand Up @@ -210,7 +211,7 @@ \section*{Chapter 1.A}
\end{definition}

\begin{definition}{1.15}[$0$]
Let $0$ denote the list of length $n$ whose coorinates are all 0:
Let $0$ denote the list of length $n$ whose coordinates are all 0:
$$
(0, \ldots, 0 ).
$$
Expand Down Expand Up @@ -369,7 +370,7 @@ \section*{Chapter 1.C}
The following rules can all be derived from the definitions.

\begin{result}{1.34}[conditions for a subspace]
A subset $U$ of $V$ is a subspace of $V$ if and only if $U$ satifies the following three conditions.
A subset $U$ of $V$ is a subspace of $V$ if and only if $U$ satisfies the following three conditions.

\defn{additive identity}
\begin{forceindent}
Expand Down Expand Up @@ -408,7 +409,7 @@ \section*{Chapter 1.C}
\section*{Chapter 2.A}

\begin{notation}{2.1}[list of vectors]
We write lists of vectors without surrounding parantheses.
We write lists of vectors without surrounding parentheses.
\end{notation}

\begin{definition}{2.2}[linear combination]
Expand Down Expand Up @@ -679,7 +680,7 @@ \section*{Chapter 3.A}
\end{result}

\begin{result}{Ex. 3A, 13}[Linear maps on a subspace can be extended to a map on the whole vector space]
Suppose $V$ is finite-dimentional. Prove that every linear map on a subspace of $V$ can be extended to a linear map on $V$. In other words, show that if $U$ is a subspace of $V$ and $S \in \L(U, V)$, then there exists $T \in \L(V, W)$ such that $Tu = Su$ for all $u \in E$.
Suppose $V$ is finite-dimensional. Prove that every linear map on a subspace of $V$ can be extended to a linear map on $V$. In other words, show that if $U$ is a subspace of $V$ and $S \in \L(U, V)$, then there exists $T \in \L(V, W)$ such that $Tu = Su$ for all $u \in E$.
\end{result}

\newpage
Expand Down Expand Up @@ -844,10 +845,10 @@ \section*{Chapter 3.C}
\end{enumerate}
\end{definition}

\begin{definition}{3.54}[transpose, $A^t$]
The \defn{transpose} of a matrix $A$, denoted by $A^t$, is the matrix obtained from $A$ by interchanging rows and columns. Specifically, if $A$ is an $m$-by-$n$ matrix, then $A^t$ is an $n$-by-$m$ matrix whose entries are given by the equation
\begin{definition}{3.54}[transpose, $\transpose{A}$]
The \defn{transpose} of a matrix $A$, denoted by $\transpose{A}$, is the matrix obtained from $A$ by interchanging rows and columns. Specifically, if $A$ is an $m$-by-$n$ matrix, then $\transpose{A}$ is an $n$-by-$m$ matrix whose entries are given by the equation
$$
(A^t)_{k, j} = A_{j, k} .
(\transpose{A})_{k, j} = A_{j, k} .
$$
\end{definition}

Expand Down Expand Up @@ -941,20 +942,20 @@ \section*{Chapter 3.C}

% Exercise 14
\begin{result}{Ex. 3C, 14}[transpose is a linear map]
Suppose $m$ and $n$ are positive integers. Then the function $A \mapsto A^t$ is a linear map from $\F^{m, n}$ to $\F^{n, m}$.
Suppose $m$ and $n$ are positive integers. Then the function $A \mapsto \transpose{A}$ is a linear map from $\F^{m, n}$ to $\F^{n, m}$.

In other words $(A + B)^t = A^t + B^t$, $(\lambda A)^t = \lambda A^t$ for all $m$-by-$n$ matrices $A$, $B$ and all $\lambda \in \F$.
In other words $\transpose{(A + B)} = \transpose{A} + \transpose{B}$, $\transpose{(\lambda A)} = \lambda \transpose{A}$ for all $m$-by-$n$ matrices $A$, $B$ and all $\lambda \in \F$.
\end{result}

% Exercise 15
\begin{result}{Ex. 3C, 15}[The transpose of the product is the product of the transposes in the opposite order]
If $A$ is an $m$-by-$n$ matrix and $C$ is an $n$-by-$p$ matrix, then
$$
(AC)^t = C^t A^t .
\transpose{(AC)} = \transpose{C} \transpose{A} .
$$
\end{result}

\begin{result}{3.56}[column-row factorization]
\begin{result}{3.56}[column-row factorisation]
Suppose $A$ is an $m$-by-$n$ matrix with entries in $\F$ and column rank $c \ge 1$. Then there exist an $m$-by-$c$ matrix $C$ and a $c$-by-$n$ matrix $R$, both with entries in $\F$, such that $A = C R$.
\end{result}

Expand Down Expand Up @@ -1093,7 +1094,7 @@ \section*{Chapter 3.D}
\end{result}

\begin{result}{3.86}[matrix of inverse equals inverse of matrix]
Suppose that $v_1, \ldots, v_n$ is a basis of $V$ and $T \in \L(V)$ is invertible. Then $\M(T^{-1}) = (\M(T))^{-1}$, where both matrixes are with respect to the basis $v_1, \ldots, v_n$.
Suppose that $v_1, \ldots, v_n$ is a basis of $V$ and $T \in \L(V)$ is invertible. Then $\M(T^{-1}) = (\M(T))^{-1}$, where both matrices are with respect to the basis $v_1, \ldots, v_n$.
\end{result}

\clearpage
Expand Down Expand Up @@ -1195,7 +1196,7 @@ \section*{Chapter 3.E}
\end{result}

\begin{result}{3.101}[two translates of a subspace are equal or disjoint]
Suppose $U$ is a subapace of $V$ and $v, w \in V$. Then
Suppose $U$ is a subspace of $V$ and $v, w \in V$. Then
$$
v - w \in U \Longleftrightarrow v + U = w + U \Longleftrightarrow (v + U) \cap (w + U) \not= \emptyset.
$$
Expand All @@ -1222,4 +1223,135 @@ \section*{Chapter 3.E}
\end{enumerate}
\end{result}

% Exercise 18
\begin{result}{Ex. 3E, 18}[Direct sum of a quotient]
Suppose $U$ is a subspace of $V$ such that $V / U$ is finite-dimensional. Then there exists a finite-dimensional subspace $W$ of $V$ such that $\dim W = \dim V / U$ and $V = U \oplus W$.
\end{result}

\clearpage

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Chapter 3.F}

\begin{definition}{3.108}[linear functional]
A \defn{linear functional} on $V$ is a linear map from $V$ to $\F$. In other words, a linear functional is an element of $\L(V, \F)$.
\end{definition}

\begin{definition}{3.110}[dual space $V'$]
The \defn{dual space} of $V$, denoted by $V'$, is the vector space of all linear functionals on $V$. In other words, $V' = \L(V, \F)$.
\end{definition}

\begin{definition}{3.112}[dual basis]
If $v_1, \ldots, v_n$ is a basis of $V$, then the \defn{dual basis} of $v_1, \ldots, v_n$ is the list $\varphi_1, \ldots, \varphi_n$ of elements of $V'$, where each $\varphi_j$ is the linear functional on $V$ such that
$$
\varphi_j(v_k) =
\begin{cases}
1 & \text{if } k = j, \\
0 & \text{if } k \not= j.
\end{cases}
$$
\end{definition}

\begin{definition}{3.118}[dual map, $T'$]
Suppose $T \in \L(V, W)$. The \defn{dual map} of $T$ is the linear map $T' \in \L(W', V')$ defined for each $\varphi \in W'$ by
$$
T'(\varphi) = \varphi \circ T.
$$
\end{definition}

\begin{definition}{3.121}[annihilator, $U^0$]
For $U \subseteq V$, the \defn{annihilator} of $U$, denoted by $U^0$, is defined by
$$
U^0 = \{ \varphi \in V' \setsep \varphi(u) = 0 \text{ for all } u \in U \}.
$$
\end{definition}

\newpage

\begin{result}{3.111}[$\dim V' = \dim V$]
Suppose $V$ is finite-dimensional. Then $V'$ is also finite-dimensional and
$$
\dim V' = \dim V.
$$
\end{result}

\begin{result}{3.114}[dual basis gives coefficients for linear combination]
Suppose $v_1, \ldots, v_n$ is a basis of $V$ and $\varphi_i, \ldots, \varphi_n$ is the dual basis. Then for each $v \in V$
$$
v = \varphi_1(v) v_1 + \cdots + \varphi_n(v) v_n
$$
\end{result}

\begin{result}{3.116}[dual basis is a basis of the dual space]
Suppose $V$ is finite-dimensional. Then the dual basis of a basis of $V$ is a basis of $V'$.
\end{result}

\begin{result}{3.120}[algebraic properties of dual maps]
Suppose $T \in \L(V, W)$. Then
\begin{enumerate}
\item[(a)] $(S + T)' = S' + T'$ for all $S \in \L(V, W)$;
\item[(b)] $(\lambda T)' = \lambda T'$ for all $\lambda \in \F$;
\item[(c)] $(ST)' = T' S'$ for all $S \in \L(W, U)$.
\end{enumerate}
\end{result}

\begin{result}{3.124}[the annihilator is a subspace]
Suppose $U \subseteq V$. Then $U^0$ is a subspace of $V'$.
\end{result}

\begin{result}{3.125}[dimension of the annihilator]
If $V$ is finite-dimensional and $U$ is a subspace of $V$ then
$$
\dim U^0 = \dim V - \dim U.
$$
\end{result}

\begin{result}{3.127}[condition for the annihilator to equal $\{ 0 \}$ or the whole space]
If $V$ is finite-dimensional and $U$ is a subspace of $V$ then
\begin{enumerate}
\item[(a)] $U^0 = \{ 0 \} \Longleftrightarrow U = V$;
\item[(b)] $U^0 = V' \Longleftrightarrow U = \{ 0 \}$.
\end{enumerate}
\end{result}

\begin{result}{3.128}[the null space of $T'$]
Suppose $T \in \L(V, W)$. Then
\begin{enumerate}
\item[(a)] $\kernel T' = (\range T)^0$.
\end{enumerate}
Suppose further that $V$ and $W$ are finite-dimensional. Then
\begin{enumerate}
\item[(b)] $\dim \kernel T' = \dim \kernel T + \dim W - \dim W$.
\end{enumerate}
\end{result}

\begin{result}{3.129}[$T$ surjective is equivalent to $T'$ injective]
If $V$ and $W$ are finite-dimensional and $T \in \L(V, W)$ then
$$
T \text{ is surjective } \Longleftrightarrow T' \text{ is injective}.
$$
\end{result}

\begin{result}{3.130}[the range of $T'$]
If $V$ and $W$ are finite-dimensional and $T \in \L(V, W)$ then
\begin{enumerate}
\item[(a)] $\dim \range T' = \dim \range T$;
\item[(b)] $\range T' = (\kernel T)^0$.
\end{enumerate}
\end{result}

\begin{result}{3.131}[$T$ injective is equivalent to $T'$ surjective]
If $V$ and $W$ are finite-dimensional and $T \in \L(V, W)$ then
$$
T \text{ is injective } \Longleftrightarrow T' \text{ is surjective}.
$$
\end{result}

\begin{result}{3.132}[matrix of $T'$ is transpose of matrix of $T$]
If $V$ and $W$ are finite-dimensional and $T \in \L(V, W)$ then
$$
\M(T') = \transpose{(\M(T))}.
$$
\end{result}

\end{document}

0 comments on commit aa06b7f

Please sign in to comment.