-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add splitmixer to timm models, add food101 training script, add throu…
…ghput calculation
- Loading branch information
Showing
4 changed files
with
190 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -127,3 +127,5 @@ dmypy.json | |
|
||
# Pyre type checker | ||
.pyre/ | ||
|
||
*.DS_Store |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
import os | ||
# os.environ["CUDA_VISIBLE_DEVICES"] = '1' | ||
|
||
import time | ||
import numpy as np | ||
|
||
import torch.optim as optim | ||
import torchvision | ||
from torchvision import datasets, models, transforms | ||
|
||
import sys | ||
sys.path.append('./pytorch-image-models/') | ||
from timm.models.convmixer import ConvMixer | ||
from timm.models.splitmixer import SplitMixerI, SplitMixerII, SplitMixerIII, SplitMixerIV | ||
|
||
device = 'cuda' | ||
|
||
args_name = 'SplitMixer' | ||
args_batch_size = 128#64 | ||
args_scale = 1 #0.75 | ||
args_reprob = 0 #.25 | ||
args_ra_m = 12 #8 | ||
args_ra_n = 2#1 | ||
args_jitter = 0 #.1 | ||
args_hdim = 256 | ||
args_depth = 8 | ||
args_psize = 7 | ||
args_conv_ks = 7 | ||
args_wd = 0.005 #.01 | ||
args_clip_norm = True | ||
args_epochs = 100 | ||
args_lr_max = 0.01 | ||
args_workers = 2 | ||
num_classes = 101 | ||
|
||
|
||
mean = { | ||
'cifar10': (0.4914, 0.4822, 0.4465), | ||
'cifar100': (0.5071, 0.4867, 0.4408), | ||
'flower': (0.507, 0.487, 0.441), | ||
'food': (0.485, 0.456, 0.406), | ||
} | ||
|
||
std = { | ||
'cifar10': (0.2023, 0.1994, 0.2010), | ||
'cifar100': (0.2675, 0.2565, 0.2761), | ||
'flower': (0.267, 0.256, 0.276), | ||
'food': (0.229, 0.224, 0.225) | ||
} | ||
|
||
mean, std = mean['food'], std['food'] | ||
|
||
train_transform = transforms.Compose([ | ||
transforms.Resize((230,230)), | ||
transforms.RandomResizedCrop(224, scale=(args_scale, 1.0), ratio=(1.0, 1.0)), | ||
transforms.RandomHorizontalFlip(p=0.5), | ||
transforms.RandAugment(num_ops=args_ra_n, magnitude=args_ra_m), | ||
transforms.ColorJitter(args_jitter, args_jitter, args_jitter), | ||
transforms.ToTensor(), | ||
transforms.Normalize(mean, std), | ||
transforms.RandomErasing(p=args_reprob) | ||
]) | ||
|
||
test_transform = transforms.Compose([ | ||
transforms.Resize((224,224)), | ||
transforms.ToTensor(), | ||
transforms.Normalize(mean, std) | ||
]) | ||
|
||
trainset = torchvision.datasets.Food101(root='./data', split='train', | ||
download=True, transform=train_transform) | ||
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args_batch_size, | ||
shuffle=True, num_workers=args_workers) | ||
|
||
testset = torchvision.datasets.Food101(root='./data', split='test', | ||
download=True, transform=test_transform) | ||
testloader = torch.utils.data.DataLoader(testset, batch_size=args_batch_size, | ||
shuffle=False, num_workers=args_workers) | ||
|
||
# model = ConvMixer(args_hdim, args_depth, patch_size=args_psize, kernel_size=args_conv_ks, n_classes=num_classes).to(device) | ||
model = SplitMixerI(args_hdim, args_depth, patch_size=args_psize, kernel_size=args_conv_ks, n_classes=num_classes, ratio=2./3.).to(device) | ||
# model = SplitMixerIV(args_hdim, args_depth, patch_size=args_psize, kernel_size=args_conv_ks, n_classes=num_classes, n_part=2).to(device) | ||
|
||
|
||
model = nn.DataParallel(model).cuda() | ||
print(model) | ||
|
||
|
||
lr_schedule = lambda t: np.interp([t], [0, args_epochs*2//5, args_epochs*4//5, args_epochs], | ||
[0, args_lr_max, args_lr_max/20.0, 0])[0] | ||
|
||
opt = optim.AdamW(model.parameters(), lr=args_lr_max, weight_decay=args_wd) | ||
criterion = nn.CrossEntropyLoss() | ||
scaler = torch.cuda.amp.GradScaler() | ||
|
||
|
||
for epoch in range(args_epochs): | ||
start = time.time() | ||
train_loss, train_acc, n = 0, 0, 0 | ||
for i, (X, y) in enumerate(trainloader): | ||
model.train() | ||
X, y = X.cuda(), y.cuda() | ||
|
||
lr = lr_schedule(epoch + (i + 1)/len(trainloader)) | ||
opt.param_groups[0].update(lr=lr) | ||
|
||
opt.zero_grad() | ||
with torch.cuda.amp.autocast(): | ||
output = model(X) | ||
loss = criterion(output, y) | ||
|
||
scaler.scale(loss).backward() | ||
if args_clip_norm: | ||
scaler.unscale_(opt) | ||
nn.utils.clip_grad_norm_(model.parameters(), 1.0) | ||
scaler.step(opt) | ||
scaler.update() | ||
|
||
train_loss += loss.item() * y.size(0) | ||
train_acc += (output.max(1)[1] == y).sum().item() | ||
n += y.size(0) | ||
|
||
model.eval() | ||
test_acc, m = 0, 0 | ||
with torch.no_grad(): | ||
for i, (X, y) in enumerate(testloader): | ||
X, y = X.cuda(), y.cuda() | ||
with torch.cuda.amp.autocast(): | ||
output = model(X) | ||
test_acc += (output.max(1)[1] == y).sum().item() | ||
m += y.size(0) | ||
|
||
print(f'[{args_name}] Epoch: {epoch} | Train Acc: {train_acc/n:.4f}, Test Acc: {test_acc/m:.4f}, Time: {time.time() - start:.1f}, lr: {lr:.6f}') |
Submodule pytorch-image-models
added at
f96da5
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
import torch | ||
|
||
import sys | ||
sys.path.append('./pytorch-image-models/') | ||
from timm.models.convmixer import ConvMixer | ||
from timm.models.splitmixer import SplitMixerI, SplitMixerII, SplitMixerIII, SplitMixerIV | ||
|
||
device = 'cuda' | ||
|
||
args_hdim = 256 | ||
args_depth = 8 | ||
args_psize = 7 | ||
args_conv_ks = 7 | ||
num_classes = 102 | ||
|
||
I_ratios = [2/3, 3/5, 4/7, 5/9, 6/11] | ||
II_n_part = [2, 3, 4, 5, 6] | ||
III_n_part = [2, 4, 8] | ||
IV_n_part = [2, 3, 4, 5] | ||
|
||
labels = ['convmixer'] | ||
models = [ConvMixer(args_hdim, args_depth, patch_size=args_psize, kernel_size=args_conv_ks, n_classes=num_classes)] | ||
|
||
models += [SplitMixerI(args_hdim, args_depth, patch_size=args_psize, kernel_size=args_conv_ks, n_classes=num_classes, ratio=r) for r in I_ratios] | ||
labels += [f'splitmixerI-{r}' for r in I_ratios] | ||
|
||
models += [SplitMixerII(args_hdim, args_depth, patch_size=args_psize, kernel_size=args_conv_ks, n_classes=num_classes, n_part=_p) for _p in II_n_part] | ||
labels += [f'splitmixerII-{_p}' for _p in II_n_part] | ||
|
||
models += [SplitMixerIII(args_hdim, args_depth, patch_size=args_psize, kernel_size=args_conv_ks, n_classes=num_classes, n_part=_p) for _p in III_n_part] | ||
labels += [f'splitmixerIII-{_p}' for _p in III_n_part] | ||
|
||
models += [SplitMixerIV(args_hdim, args_depth, patch_size=args_psize, kernel_size=args_conv_ks, n_classes=num_classes, n_part=_p) for _p in IV_n_part] | ||
labels += [f'splitmixerIV-{_p}' for _p in IV_n_part] | ||
|
||
batch_size = 64 | ||
dummy_input = torch.randn(batch_size, 3, 224, 224, dtype=torch.float).to(device) | ||
repetitions=100 | ||
|
||
for i in range(len(models)): | ||
print('\n', labels[i]) | ||
model = models[i].to(device) | ||
total_time = 0 | ||
with torch.no_grad(): | ||
for rep in range(repetitions): | ||
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True) | ||
starter.record() | ||
_ = model(dummy_input) | ||
ender.record() | ||
torch.cuda.synchronize() | ||
curr_time = starter.elapsed_time(ender)/1000 | ||
total_time += curr_time | ||
Throughput = (repetitions * batch_size)/total_time | ||
print('Throughput:',Throughput) |