Pytorch implementation of LIME-CAM (LIME-based variant of CAM) and Grad-CAM
- Python 2.7
- Numpy
- pytorch 0.4.0
- torchvision 0.2.1
- opencv
- sklearn
python main.py --help
--image_path
: a path to an image (required)--result_path
: a path to the explanation result (default: results/result_{method}_{class}.png)--model
: a model name fromtorchvision.models
, e.g., 'vgg16' (default: vgg16)--method
: a method to generate the explanation e.g., 'limecam, 'gradcam' (required)--no_cuda
: disables GPU usage
[1] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra. "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization". arXiv, 2016
[2] M. T. Riberio, S. Singh, and C. Guestrin. ""Why should I Trust You?": Explaining the Predictions of Any Classifier". arXiv, 2016