-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathcontroller.py
93 lines (56 loc) · 2.72 KB
/
controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from model import SiameseBiLSTM
from inputHandler import word_embed_meta_data, create_test_data
from config import siamese_config
from operator import itemgetter
from keras.models import load_model
import pandas as pd
########################################
############ Data Preperation ##########
########################################
df = pd.read_csv('sample_data.csv')
sentences1 = list(df['sentences1'])
sentences2 = list(df['sentences2'])
is_similar = list(df['is_similar'])
del df
####################################
######## Word Embedding ############
####################################
# creating word embedding meta data for word embedding
tokenizer, embedding_matrix = word_embed_meta_data(sentences1 + sentences2, siamese_config['EMBEDDING_DIM'])
embedding_meta_data = {
'tokenizer': tokenizer,
'embedding_matrix': embedding_matrix
}
## creating sentence pairs
sentences_pair = [(x1, x2) for x1, x2 in zip(sentences1, sentences2)]
del sentences1
del sentences2
##########################
######## Training ########
##########################
from config import siamese_config
class Configuration(object):
"""Dump stuff here"""
CONFIG = Configuration()
CONFIG.embedding_dim = siamese_config['EMBEDDING_DIM']
CONFIG.max_sequence_length = siamese_config['MAX_SEQUENCE_LENGTH']
CONFIG.number_lstm_units = siamese_config['NUMBER_LSTM']
CONFIG.rate_drop_lstm = siamese_config['RATE_DROP_LSTM']
CONFIG.number_dense_units = siamese_config['NUMBER_DENSE_UNITS']
CONFIG.activation_function = siamese_config['ACTIVATION_FUNCTION']
CONFIG.rate_drop_dense = siamese_config['RATE_DROP_DENSE']
CONFIG.validation_split_ratio = siamese_config['VALIDATION_SPLIT']
siamese = SiameseBiLSTM(CONFIG.embedding_dim , CONFIG.max_sequence_length, CONFIG.number_lstm_units , CONFIG.number_dense_units,
CONFIG.rate_drop_lstm, CONFIG.rate_drop_dense, CONFIG.activation_function, CONFIG.validation_split_ratio)
best_model_path = siamese.train_model(sentences_pair, is_similar, embedding_meta_data, model_save_directory='./')
########################
###### Testing #########
########################
model = load_model(best_model_path)
test_sentence_pairs = [('What can make Physics easy to learn?','How can you make physics easy to learn?'),
('How many times a day do a clocks hands overlap?','What does it mean that every time I look at the clock the numbers are the same?')]
test_data_x1, test_data_x2, leaks_test = create_test_data(tokenizer,test_sentence_pairs, siamese_config['MAX_SEQUENCE_LENGTH'])
preds = list(model.predict([test_data_x1, test_data_x2, leaks_test], verbose=1).ravel())
results = [(x, y, z) for (x, y), z in zip(test_sentence_pairs, preds)]
results.sort(key=itemgetter(2), reverse=True)
print(results)