Siamese neural network is a class of neural network architectures that contain two or more identical subnetworks. identical here means they have the same configuration with the same parameters and weights. Parameter updating is mirrored across both subnetworks.
It is a keras based implementation of deep siamese Bidirectional LSTM network to capture phrase/sentence similarity using word embeddings.
Below is the architecture description for the same.
pip install -r requirements.txt
from model import SiameseBiLSTM
from inputHandler import word_embed_meta_data, create_test_data
from config import siamese_config
import pandas as pd
############ Data Preperation ##########
df = pd.read_csv('sample_data.csv')
sentences1 = list(df['sentences1'])
sentences2 = list(df['sentences2'])
is_similar = list(df['is_similar'])
del df
######## Word Embedding ############
tokenizer, embedding_matrix = word_embed_meta_data(sentences1 + sentences2, siamese_config['EMBEDDING_DIM'])
embedding_meta_data = {
'tokenizer': tokenizer,
'embedding_matrix': embedding_matrix
}
## creating sentence pairs
sentences_pair = [(x1, x2) for x1, x2 in zip(sentences1, sentences2)]
del sentences1
del sentences2
######## Training ########
class Configuration(object):
"""Dump stuff here"""
CONFIG = Configuration()
CONFIG.embedding_dim = siamese_config['EMBEDDING_DIM']
CONFIG.max_sequence_length = siamese_config['MAX_SEQUENCE_LENGTH']
CONFIG.number_lstm_units = siamese_config['NUMBER_LSTM']
CONFIG.rate_drop_lstm = siamese_config['RATE_DROP_LSTM']
CONFIG.number_dense_units = siamese_config['NUMBER_DENSE_UNITS']
CONFIG.activation_function = siamese_config['ACTIVATION_FUNCTION']
CONFIG.rate_drop_dense = siamese_config['RATE_DROP_DENSE']
CONFIG.validation_split_ratio = siamese_config['VALIDATION_SPLIT']
siamese = SiameseBiLSTM(CONFIG.embedding_dim , CONFIG.max_sequence_length, CONFIG.number_lstm_units , CONFIG.number_dense_units, CONFIG.rate_drop_lstm, CONFIG.rate_drop_dense, CONFIG.activation_function, CONFIG.validation_split_ratio)
best_model_path = siamese.train_model(sentences_pair, is_similar, embedding_meta_data, model_save_directory='./')
from operator import itemgetter
from keras.models import load_model
model = load_model(best_model_path)
test_sentence_pairs = [('What can make Physics easy to learn?','How can you make physics easy to learn?'),('How many times a day do a clocks hands overlap?','What does it mean that every time I look at the clock the numbers are the same?')]
test_data_x1, test_data_x2, leaks_test = create_test_data(tokenizer,test_sentence_pairs, siamese_config['MAX_SEQUENCE_LENGTH'])
preds = list(model.predict([test_data_x1, test_data_x2, leaks_test], verbose=1).ravel())
results = [(x, y, z) for (x, y), z in zip(test_sentence_pairs, preds)]
results.sort(key=itemgetter(2), reverse=True)
print results
- Siamese Recurrent Architectures for Learning Sentence Similarity (2016)
- Inspired from Tensorflow Implementation of https://github.com/dhwajraj/deep-siamese-text-similarity