Skip to content
/ SynWMD Public

Syntax-aware Word Mover’s Distance for Sentence Similarity Modeling

Notifications You must be signed in to change notification settings

amao0o0/SynWMD

Repository files navigation

SynWMD

Syntax-aware Word Mover’s Distance for Sentence Similarity Modeling

SynWMD, an improved Word Mover's Distance, leverages sentence structural information to improve WMD for sentence similarity modeling. SynWMD incorporates the syntactic dependency parse tree into both the word flow assignment process and the word distance modeling process in WMD to improve the performance on sentence similarity modeling.

Environment Setup

Linux OS is recommended

# create a new virtual environment with conda 
conda create -n synwmd python=3.9.7

# activate
conda activate synwmd

# essentials installation with pip
pip install -r requirements.txt

# pytorch
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch

Data Download

cd data/downstream/
bash get_transfer_data.bash
cd ../..

The Results in Semantic Textual Similarity (STS) - Spearman

Embeddings Methods STS12 STS13 STS14 STS15 STS16 STS-B Avg.
BERT (First-last) WMDl2 53.03 58.96 56.79 72.11 63.56 61.01 60.91
BERT (First-last) WMDcos 55.38 58.51 56.93 72.81 64.47 61.80 61.65
BERT (First-last) WRD 49.93 63.48 57.63 72.04 64.11 61.92 61.52
BERT (First-last) WMDl2+IDF 61.19 68.67 63.72 76.87 70.16 69.56 68.36
BERT (First-last) WMDcos+IDF 63.79 69.25 64.51 77.58 71.7 70.69 69.59
BERT (First-last) BERTScore 61.32 73.00 66.52 78.47 73.43 71.77 70.75
BERT (First-last) SynWMDdwf 66.34 77.08 68.96 79.13 74.05 74.06 73.27
BERT (First-last) SynWMDdwf+dwd 66.74 79.38 69.76 78.77 75.52 74.81 74.16
Embeddings Methods STS12 STS13 STS14 STS15 STS16 STS-B Avg.
SimCSE-BERT Sent. Emb. 68.40 82.41 74.38 80.91 78.56 76.85 76.92
SimCSE-BERT WMDcos 65.43 80.00 73.35 81.21 76.97 77.18 75.69
SimCSE-BERT WMDcos+IDF 68.47 81.76 74.98 82.30 78.29 78.98 77.46
SimCSE-BERT BERTScore 66.31 82.87 75.66 83.14 79.16 80.03 77.86
SimCSE-BERT SynWMDdwf+dwd 70.27 83.44 76.19 83.21 78.83 79.98 78.66
  • First python parser_download.py to download the parser.

  • The kernel and bias for whitening BERT (first_last) embedding are provided in /data/whiten/. You can also run python whiten.py to get the whitening kernel and bias for BERT (first_last) embedding.

  • The results can be obtained by the demo eva_stsall_demo.py

    • Directly running python eva_stsall_demo.py gives the result of SynWMDdwf+dwd using BERT (First-last) embeddings
    • Directly running python eva_stsall_demo2.py gives the result of SynWMDdwf+dwd using SimCSE-BERT embeddings
    • Other results can be reproduced by changing the parameters in the demo eva_stsall_demo.py or eva_stsall_demo2.py

Citation

If you find our model is useful in your research, please consider cite our paper:

@article{wei2023synwmd,
  title={Synwmd: Syntax-aware word mover’s distance for sentence similarity evaluation},
  author={Wei, Chengwei and Wang, Bin and Kuo, C-C Jay},
  journal={Pattern Recognition Letters},
  volume={170},
  pages={48--55},
  year={2023},
  publisher={Elsevier}
}

Acknowledge

A part of the code is modified from other work. Many thanks for

  1. MoverScore
  2. SentEval Sentence Evluation toolkit.

About

Syntax-aware Word Mover’s Distance for Sentence Similarity Modeling

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published