Tools to display and list details of MLflow objects in JSON, CSV and Markdown format.
Python scripts:
- MLflow objects - display and list MLflow objects (runs, experiments, models, versions, etc.) in JSON or CSV format.
- Databricks objects - display and list Databricks objects (model serving endpoints and vecotr search endpoints and indexes) in JSON or CSV format.
- Model reports - displays an MLflow model and its related objects in Markdown format.
Tools come in three formats:
- Regular Python scripts (see above links).
- Databricks notebooks.
- Streamlit apps - can be run either on your laptop or inside a notebook.
Notes:
- See lots of JSON and Markdown samples. Model versions have the most samples.
- Databricks Unity Catalog models are also supported.
- The README documentation lags the actual implementation so always consult the source.
python -m venv mlflow-reports
source mlflow-reports/bin/activate
pip install git+https:///github.com/amesar/mlflow-reports/#egg=mlflow-reports[streamlit]
# Optional - if you want Unity Catalog models
export MLFLOW_REGISTRY_URI=databricks-uc
For full JSON output, see samples, for example uc_model_version.json.
get-model-version \
--registered-model andre.ml_models.sklearn_wine_best \
--version 1 \
--get-expanded True \
--output-file model_version.json
{
"model_version": {
"name": "andre.ml_models.sklearn_wine_best",
"version": "4",
"creation_timestamp": 1703291776610,
"last_updated_timestamp": 1703292274182,
"user_id": "andre@mycompany.com",
"_creation_timestamp": "2023-12-23 00:36:17",
"_last_updated_timestamp": "2023-12-23 00:44:34",
. . .
},
"mlflow_model": {
"artifact_path": "model",
"databricks_runtime": "14.1.x-cpu-ml-scala2.12",
"flavors": {
"python_function": {
. . .
},
"registered_model": {
"name": "andre.ml_models.sklearn_wine_best",
"creation_timestamp": 1691761329476,
"last_updated_timestamp": 1703863881768,
"user_id": "andre@mycompany.com",
"description": "Best sklearn_wine registered model",
"aliases": [
{
"alias": "champ",
"version": "7"
},
. . .
},
"run": {
"info": {
"run_id": "8217f29c1e5f4488a8fddaf9245d33bb",
"run_uuid": "8217f29c1e5f4488a8fddaf9245d33bb",
"experiment_id": 2668333326915882,
"run_name": "white 2023-12-22",
. . .
},
"experiment": {
"experiment": {
"experiment_id": 2668333326915882,
"name": "/Users/andre@mycompany.com/experiments/best/Sklearn_Wine_repo_uc",
"artifact_location": "dbfs:/databricks/mlflow-tracking/2668333326915882",
"permissions": {
"permission_levels": [
. . .
}
}
See examples registered_models.txt and registered_models.csv
list-registered-models \
--output-file-base models \
--columns name,user_id,creation_timestamp
+-----------------------------------------+--------------------------+----------------------+
| name | user_id | creation_timestamp |
+-----------------------------------------+--------------------------+----------------------+
| andre.basic_models.copy_test | sagarmatha@mycompany.com | 2023-10-09 20:48:51 |
| andre.basic_models.mini_mlops_pipeline | k2@mycompany.com | 2023-10-06 06:14:27 |
| andre.basic_models.xgboost_wine_best | karakoram@mycompany.com | 2023-08-16 05:34:57 |
| andre.basic_models.sklearn_wine_champ | denali@mycompany.com | 2023-09-19 23:01:56 |
| andre.basic_models.sklearn_wine_test_fs | chimborazo@mycompany.com | 2023-08-17 14:55:30 |
| market.llm_models.mistral7b_instruct | huascaran@mycompany.com | 2023-08-16 06:38:53 |
| market.llm_models.codellama-7b | denali@mycompany.com | 2023-08-11 14:38:18 |
+-----------------------------------------+--------------------------+----------------------+