Skip to content

Commit

Permalink
Merge pull request #3 from amirbar/feature/add_plotutils
Browse files Browse the repository at this point in the history
Add plot utils
  • Loading branch information
amirbar authored Jul 30, 2021
2 parents b1fa992 + 886d984 commit 917f2a7
Show file tree
Hide file tree
Showing 2 changed files with 190 additions and 5 deletions.
6 changes: 1 addition & 5 deletions engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -133,11 +133,7 @@ def evaluate(model, criterion, postprocessors, data_loader, base_ds, device, out

torch.save(dict(image_id = image_id, target = target, pred_logits = pred_logits, pred_boxes = pred_boxes, pred_boxes_ = pred_boxes_), os.path.join(output_dir, str(image_id) + '.pt'))

# indices = outputs['pred_logits'][0].softmax(-1)[..., 1].sort(descending=True)[1][:10]
# boxes = torch.stack([outputs['pred_boxes'][0][i] for i in indices]).unsqueeze(0)
# logits = torch.stack([outputs['pred_logits'][0][i] for i in indices]).unsqueeze(0)
# plot_prediction(samples.tensors[0:1], boxes, logits, plot_prob=False)
# from matplotlib import pyplot as plt; plt.show()

loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict

Expand Down
189 changes: 189 additions & 0 deletions util/plot_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,189 @@
# ------------------------------------------------------------------------
# Deformable DETR
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------

"""
Plotting utilities to visualize training logs.
"""
import torch
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import cv2
import random
from pathlib import Path, PurePath
import numpy as np

from util.box_ops import box_cxcywh_to_xyxy

CLASSES = [
'N/A', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack',
'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis',
'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass',
'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A',
'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard',
'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A',
'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier',
'toothbrush'
]
# colors for visualization
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]


def plot_logs(logs, labels, fields=('class_error', 'loss_bbox_unscaled', 'mAP'), ewm_col=0, log_name='log.txt', mode='test'):
'''
Function to plot specific fields from training log(s). Plots both training and test results.
:: Inputs - logs = list containing Path objects, each pointing to individual dir with a log file
- fields = which results to plot from each log file - plots both training and test for each field.
- ewm_col = optional, which column to use as the exponential weighted smoothing of the plots
- log_name = optional, name of log file if different than default 'log.txt'.
:: Outputs - matplotlib plots of results in fields, color coded for each log file.
- solid lines are training results, dashed lines are test results.
'''
func_name = "plot_utils.py::plot_logs"

# verify logs is a list of Paths (list[Paths]) or single Pathlib object Path,
# convert single Path to list to avoid 'not iterable' error

if not isinstance(logs, list):
if isinstance(logs, PurePath):
logs = [logs]
print(f"{func_name} info: logs param expects a list argument, converted to list[Path].")
else:
raise ValueError(f"{func_name} - invalid argument for logs parameter.\n \
Expect list[Path] or single Path obj, received {type(logs)}")

# verify valid dir(s) and that every item in list is Path object
for i, dir in enumerate(logs):
if not isinstance(dir, PurePath):
raise ValueError(f"{func_name} - non-Path object in logs argument of {type(dir)}: \n{dir}")
if dir.exists():
continue
raise ValueError(f"{func_name} - invalid directory in logs argument:\n{dir}")

# load log file(s) and plot
dfs = [pd.read_json(Path(p) / log_name, lines=True) for p in logs]

fig, axs = plt.subplots(ncols=len(fields), figsize=(16, 5))

for df, color in zip(dfs, sns.color_palette(n_colors=len(logs))):
for j, field in enumerate(fields):
if field == 'mAP':
if hasattr(df, 'test_coco_eval_bbox'):
coco_eval = pd.DataFrame(pd.np.stack(df.test_coco_eval_bbox.dropna().values)[:, 0]).ewm(com=ewm_col).mean()
print(np.max(coco_eval))
axs[j].plot(coco_eval, c=color)
else:
df.interpolate().ewm(com=ewm_col).mean().plot(
y=[f'{mode}_{field}'],
ax=axs[j],
color=[color],
style=['-']
)
# print(df[f'test_{field}'])
for ax, field in zip(axs, fields):
if field == 'mAP':
ax.legend(labels)
ax.set_title(field)
else:
legend = []
for p in logs:
legend.extend(labels)
ax.legend(legend)
ax.set_title(field)



def plot_precision_recall(files, naming_scheme='iter'):
if naming_scheme == 'exp_id':
# name becomes exp_id
names = [f.parts[-3] for f in files]
elif naming_scheme == 'iter':
names = [f.stem for f in files]
else:
raise ValueError(f'not supported {naming_scheme}')
fig, axs = plt.subplots(ncols=2, figsize=(16, 5))
for f, color, name in zip(files, sns.color_palette("Blues", n_colors=len(files)), names):
data = torch.load(f)
# precision is n_iou, n_points, n_cat, n_area, max_det
precision = data['precision']
recall = data['params'].recThrs
scores = data['scores']
# take precision for all classes, all areas and 100 detections
precision = precision[0, :, :, 0, -1].mean(1)
scores = scores[0, :, :, 0, -1].mean(1)
prec = precision.mean()
rec = data['recall'][0, :, 0, -1].mean()
print(f'{naming_scheme} {name}: mAP@50={prec * 100: 05.1f}, ' +
f'score={scores.mean():0.3f}, ' +
f'f1={2 * prec * rec / (prec + rec + 1e-8):0.3f}'
)
axs[0].plot(recall, precision, c=color)
axs[1].plot(recall, scores, c=color)

axs[0].set_title('Precision / Recall')
axs[0].legend(names)
axs[1].set_title('Scores / Recall')
axs[1].legend(names)
return fig, axs

def plot_opencv(boxes, output):

for (x, y, w, h) in boxes:
# draw the region proposal bounding box on the image
color = [random.randint(0, 255) for j in range(0, 3)]
cv2.rectangle(output, (x, y), (x + w, y + h), color, 2)
plt.imshow(output)
plt.show()


def plot_image(ax, img, norm):
if norm:
img = img * np.array([0.229, 0.224, 0.225]) + np.array([0.485, 0.456, 0.406])
img = (img * 255)
img = img.astype('uint8')
ax.imshow(img)


def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32).to(out_bbox)
return b

def plot_prediction(image, boxes, logits, ax=None, plot_prob=True):
bboxes_scaled0 = rescale_bboxes(boxes[0], list(image.shape[2:])[::-1])
probas = logits.softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > 0.01
if ax is None:
ax = plt.gca()
plot_results(image[0].permute(1, 2, 0).detach().cpu().numpy(), probas[keep], bboxes_scaled0[keep], ax, plot_prob=plot_prob)


def plot_results(pil_img, prob, boxes, ax, plot_prob=True, norm=True):
from matplotlib import pyplot as plt
image = plot_image(ax, pil_img, norm)
if prob is not None and boxes is not None:
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
fill=False, color='r', linewidth=1))
if plot_prob:
text = f'{p:0.2f}'
ax.text(xmin, ymin, text, fontsize=15,
bbox=dict(facecolor='yellow', alpha=0.5))
ax.grid('off')

0 comments on commit 917f2a7

Please sign in to comment.