Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Type cast before normalize flava #17

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 17 additions & 7 deletions src/transformers/models/flava/feature_extraction_flava.py
Original file line number Diff line number Diff line change
Expand Up @@ -284,13 +284,15 @@ def __call__(
If True, the processor will return `codebook_pixel_values` providing image pixels to be used with the
default FLAVA codebook. Used in pretraining by Masked Image Modeling (MIM) loss.
return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to `'np'`):
If set, will return tensors of a particular framework. Acceptable values are:
return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to `None`):
If set, will return a tensor of a particular framework.
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` object.
- `'pt'`: Return PyTorch `torch.Tensor` object.
- `'np'`: Return NumPy `np.ndarray` object.
- `'jax'`: Return JAX `jnp.ndarray` object.
- None: Return list of `np.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
Expand Down Expand Up @@ -318,8 +320,16 @@ def __call__(
images = [self.resize(image=image, size=self.size, resample=self.resample) for image in images]
if self.do_center_crop and self.crop_size is not None:
images = [self.center_crop(image, self.crop_size) for image in images]

# if do_normalize=False, the casting to a numpy array won't happen, so we need to do it here
make_channel_first = True if isinstance(images[0], Image.Image) else images[0].shape[-1] in (1, 3)
images = [self.to_numpy_array(image, rescale=False, channel_first=make_channel_first) for image in images]

if self.do_normalize:
images = [self.normalize(image=image, mean=self.image_mean, std=self.image_std) for image in images]
images = [
self.normalize(image=image, mean=self.image_mean, std=self.image_std, rescale=True) for image in images
]

# return as BatchFeature
data = {"pixel_values": images}

Expand Down
48 changes: 48 additions & 0 deletions tests/models/flava/test_feature_extraction_flava.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@

import numpy as np

from parameterized import parameterized
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

Expand Down Expand Up @@ -345,3 +346,50 @@ def test_codebook_pixels(self):
expected_width,
),
)

@parameterized.expand(
[
("do_resize_True_do_center_crop_True_do_normalize_True", True, True, True),
("do_resize_True_do_center_crop_True_do_normalize_False", True, True, False),
("do_resize_True_do_center_crop_False_do_normalize_True", True, False, True),
("do_resize_True_do_center_crop_False_do_normalize_False", True, False, False),
("do_resize_False_do_center_crop_True_do_normalize_True", False, True, True),
("do_resize_False_do_center_crop_True_do_normalize_False", False, True, False),
("do_resize_False_do_center_crop_False_do_normalize_True", False, False, True),
("do_resize_False_do_center_crop_False_do_normalize_False", False, False, False),
]
)
def test_call_flags(self, _, do_resize, do_center_crop, do_normalize):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
feature_extractor.do_center_crop = do_center_crop
feature_extractor.do_resize = do_resize
feature_extractor.do_normalize = do_normalize
# create random PIL images
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)

expected_shapes = [(3, *x.size[::-1]) for x in image_inputs]
if do_resize:
expected_shapes = [
(
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
)
for _ in range(self.feature_extract_tester.batch_size)
]
if do_center_crop:
expected_shapes = [
(
self.feature_extract_tester.num_channels,
self.feature_extract_tester.crop_size,
self.feature_extract_tester.crop_size,
)
for _ in range(self.feature_extract_tester.batch_size)
]

pixel_values = feature_extractor(image_inputs, return_tensors=None)["pixel_values"]
self.assertEqual(len(pixel_values), self.feature_extract_tester.batch_size)
for idx, image in enumerate(pixel_values):
self.assertEqual(image.shape, expected_shapes[idx])
self.assertIsInstance(image, np.ndarray)