This repository has been archived by the owner on Jun 14, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 31
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #186 from marpulli/fix_variables
Add ability to fix/unfix parameters
- Loading branch information
Showing
2 changed files
with
91 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
import unittest | ||
|
||
import mxnet as mx | ||
import numpy as np | ||
|
||
from mxfusion.common.config import get_default_dtype | ||
from mxfusion.components.variables import PositiveTransformation | ||
from mxfusion.inference import BatchInferenceLoop, GradBasedInference, MAP | ||
import mxfusion as mf | ||
|
||
|
||
class InferenceParameterTests(unittest.TestCase): | ||
def setUp(self): | ||
dtype = get_default_dtype() | ||
m = mf.models.Model() | ||
m.mean = mf.components.Variable() | ||
m.var = mf.components.Variable(transformation=PositiveTransformation()) | ||
m.N = mf.components.Variable() | ||
m.x = mf.components.distributions.Normal.define_variable(mean=m.mean, variance=m.var, shape=(m.N,)) | ||
m.y = mf.components.distributions.Normal.define_variable(mean=m.x, variance=mx.nd.array([1], dtype=dtype), shape=(m.N,)) | ||
self.m = m | ||
|
||
def test_variable_fixing(self): | ||
N = 10 | ||
dtype = get_default_dtype() | ||
observed = [self.m.y] | ||
|
||
# First check the parameter varies if it isn't fixed | ||
alg = MAP(model=self.m, observed=observed) | ||
infr = GradBasedInference(inference_algorithm=alg, grad_loop=BatchInferenceLoop()) | ||
infr.initialize(y=mx.nd.array(np.random.rand(N))) | ||
infr.run(y=mx.nd.array(np.random.rand(N), dtype=dtype), max_iter=10) | ||
assert infr.params[self.m.x.factor.mean] != mx.nd.ones(1) | ||
|
||
# Now fix parameter and check it does not change | ||
alg = MAP(model=self.m, observed=observed) | ||
infr = GradBasedInference(inference_algorithm=alg, grad_loop=BatchInferenceLoop()) | ||
infr.initialize(y=mx.nd.array(np.random.rand(N))) | ||
infr.params.fix_variable(self.m.x.factor.mean, mx.nd.ones(1)) | ||
infr.run(y=mx.nd.array(np.random.rand(N), dtype=dtype), max_iter=10) | ||
assert infr.params[self.m.x.factor.mean] == mx.nd.ones(1) | ||
|
||
def test_variable_unfixing(self): | ||
N = 10 | ||
y = np.random.rand(N) | ||
dtype = get_default_dtype() | ||
observed = [self.m.y] | ||
|
||
# First fix variable and run inference | ||
alg = MAP(model=self.m, observed=observed) | ||
infr = GradBasedInference(inference_algorithm=alg, grad_loop=BatchInferenceLoop()) | ||
infr.initialize(y=mx.nd.array(np.random.rand(N))) | ||
infr.params.fix_variable(self.m.x.factor.mean, mx.nd.ones(1)) | ||
infr.run(y=mx.nd.array(y, dtype=dtype), max_iter=10) | ||
|
||
assert infr.params[self.m.x.factor.mean] == mx.nd.ones(1) | ||
|
||
# Now unfix and run inference again | ||
infr.params.unfix_variable(self.m.x.factor.mean) | ||
infr.run(y=mx.nd.array(y, dtype=dtype), max_iter=10) | ||
|
||
assert infr.params[self.m.x.factor.mean] != mx.nd.ones(1) |