forked from gevaertlab/metalearning_survival
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pretrain_coxnet.py
153 lines (118 loc) · 7.42 KB
/
pretrain_coxnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import tensorflow as tf
import pandas as pd
import time
import random
import numpy as np
import sys
import argparse
import json
def get_batch_train(BATCH_SIZE, x_train, y_train, ystatus_train):
while True:
j=0
while (j+1)*BATCH_SIZE <= len(x_train):
x_batch=x_train[int(j*BATCH_SIZE):int((j+1)*BATCH_SIZE),:]
y_batch=y_train[int(j*BATCH_SIZE):int((j+1)*BATCH_SIZE)]
ystatus_batch=ystatus_train[int(j*BATCH_SIZE):int((j+1)*BATCH_SIZE)]
x_batch = np.array(x_batch)
y_batch=np.array(y_batch).reshape((-1,1))
ystatus_batch=np.array(ystatus_batch).reshape((-1,1))
j+=1
yield x_batch, y_batch, ystatus_batch
def get_batch_holdout(BATCH_SIZE, x_holdout, y_holdout, ystatus_holdout):
while True:
j=0
while (j+1)*BATCH_SIZE <= len(x_holdout):
x_batch=x_holdout[int(j*BATCH_SIZE):int((j+1)*BATCH_SIZE),:]
y_batch=y_holdout[int(j*BATCH_SIZE):int((j+1)*BATCH_SIZE)]
ystatus_batch=ystatus_holdout[int(j*BATCH_SIZE):int((j+1)*BATCH_SIZE)]
x_batch = np.array(x_batch)
y_batch=np.array(y_batch).reshape((-1,1))
ystatus_batch=np.array(ystatus_batch).reshape((-1,1))
j+=1
yield x_batch, y_batch, ystatus_batch
############################################################################
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='config.json', help='configuration json file')
if __name__ == '__main__':
args = parser.parse_args()
with open(args.config) as f:
config = json.load(f)
FEATURE_SIZE= config['feature_size']
BATCH_SIZE=config['batch_size']
LEARNING_RATE=config['lr']
NUM_EPOCHES=config['num_epo']
KEEP_PROB=config['keep_prob']
REG_SCALE=config['reg_scale']
model_path=config['model_path']
x_train = np.loadtxt(fname=config['train_feature'],delimiter=",",skiprows=1)
y_train = np.loadtxt(fname=config['train_time'],delimiter=",",skiprows=1)
ystatus_train = np.loadtxt(fname=config['train_status'],delimiter=",",skiprows=1)
x_holdout = np.loadtxt(fname=config['val_feature'],delimiter=",",skiprows=1)
y_holdout = np.loadtxt(fname=config['val_time'],delimiter=",",skiprows=1)
ystatus_holdout = np.loadtxt(fname=config['val_status'],delimiter=",",skiprows=1)
NUM_TRAIN_STEPS=int(len(y_train)/BATCH_SIZE)
EVA_STEP=2
CHECKPOINT_FILE=model_path+'pretrain_4layer200_dropout'+str(KEEP_PROB)+'_reg'+str(REG_SCALE)+'_batch'+str(BATCH_SIZE)+'_epo'+str(NUM_EPOCHES)+'.ckpt'
np.set_printoptions(threshold=np.inf)
tf.reset_default_graph()
regularizer = tf.contrib.layers.l2_regularizer(scale=REG_SCALE)
x = tf.placeholder(tf.float32,[None,FEATURE_SIZE], name='input_data')
ystatus=tf.placeholder(tf.float32,[None,1],name='ystatus')
R_matrix= tf.placeholder(tf.float32,[None,None],name='R_matrix')
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
dense_layer1 = tf.layers.dense(inputs=x, units=6000, activation=tf.nn.relu,kernel_regularizer=regularizer)
dense_drop1 = tf.nn.dropout(dense_layer1, keep_prob=keep_prob)
dense_layer2 = tf.layers.dense(inputs=dense_drop1, units=2000, activation=tf.nn.relu,kernel_regularizer=regularizer)
dense_drop2 = tf.nn.dropout(dense_layer2, keep_prob=keep_prob)
dense_layer3 = tf.layers.dense(inputs=dense_drop2, units=200, activation=tf.nn.relu,kernel_regularizer=regularizer)
dense_drop3 = tf.nn.dropout(dense_layer3, keep_prob=keep_prob)
theta = tf.layers.dense(inputs=dense_drop3, units=1, activation=None,use_bias=False,kernel_regularizer=regularizer)
theta=tf.reshape(theta,[-1])
exp_theta=tf.exp(theta)
loss=-tf.reduce_mean(tf.multiply((theta - tf.log(tf.reduce_sum(tf.multiply(exp_theta , R_matrix),axis=1))), tf.reshape(ystatus,[-1])))
l2_loss=tf.losses.get_regularization_loss()
loss=loss+l2_loss
optimizer=tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(loss)
saver = tf.train.Saver()
with tf.Session() as sess:
print('Graph started...')
print('NUM_TRAIN_STEPS',NUM_TRAIN_STEPS)
print('NUM_EPOCHES',NUM_EPOCHES)
sess.run(tf.global_variables_initializer()) # this could be very slow with large w and large NUM_CATES
sess.run(tf.local_variables_initializer())
for ep in range(NUM_EPOCHES):
batch_gen_train=get_batch_train(BATCH_SIZE,x_train, y_train, ystatus_train)
batch_gen_holdout=get_batch_holdout(BATCH_SIZE,x_holdout, y_holdout, ystatus_holdout)
total_loss_train=0.0
total_loss_holdout=0.0
for step in range(NUM_TRAIN_STEPS):
batch_x_train, batch_y_train, batch_ystatus_train = next(batch_gen_train)
batch_x_holdout, batch_y_holdout,batch_ystatus_holdout = next(batch_gen_holdout)
R_matrix_train = np.zeros([batch_y_train.shape[0], batch_y_train.shape[0]], dtype=int)
for i in range(batch_y_train.shape[0]):
for j in range(batch_y_train.shape[0]):
R_matrix_train[i,j] = batch_y_train[j] >= batch_y_train[i]
R_matrix_holdout = np.zeros([batch_y_holdout.shape[0], batch_y_holdout.shape[0]], dtype=int)
for i in range(batch_y_holdout.shape[0]):
for j in range(batch_y_holdout.shape[0]):
R_matrix_holdout[i,j] = batch_y_holdout[j] >= batch_y_holdout[i]
loss_batch_train, _ = sess.run([loss, optimizer], feed_dict={x: batch_x_train,
ystatus: batch_ystatus_train,
R_matrix: R_matrix_train,
keep_prob:KEEP_PROB})
loss_batch_holdout= sess.run(loss, feed_dict={x: batch_x_holdout,
ystatus: batch_ystatus_holdout,
R_matrix: R_matrix_holdout,
keep_prob:1})
total_loss_train += loss_batch_train
total_loss_holdout += loss_batch_holdout
if (step+1) % EVA_STEP == 0: # print loss every EVA_STEP
print('Average train loss at Epoch %d and Step %d is: %f' %(ep, step, total_loss_train/EVA_STEP),';',
'Holdout loss is: %f' %(total_loss_holdout/EVA_STEP))
total_loss_train=0.0
total_loss_holdout=0.0
save_path = saver.save(sess, CHECKPOINT_FILE)
print(("Model saved in file: %s" % save_path))