Skip to content

anahitafk/metalearning_survival

 
 

Repository files navigation

metalearning_survival

Project name: A meta-learning approach for genomic survival analysis

Project home page: https://github.com/gevaertlab/metalearning_survival.
Operating system(s): Platform independent
Programming language: Python
Other requirements: Python 3.6.6 or higher, Pytorch 0.4.1
License: BSD 3-Clause License

Example usage

Direct learning

python direct_learning_subsettarget.py --config 'example_config/direct_learning_train_config.json'
python direct_learning_eval.py --config 'example_config/direct_learning_eval_config.json'

Combined learning

python combined_learning.py --config 'example_config/combined_learning_train_config.json'
python neuralnet_eval.py --config 'example_config/combined_eval_config.json'

Regular pre-train fine-tune

python pretrain_coxnet.py --config 'example_config/pretrain_coxnet_config.json'
python finetune.py --config 'example_config/fintune_config.json'
python neuralnet_eval.py --config 'example_config/finetune_eval_config.json'

few-shot meta-learning
python fewshot_metatrain.py --config 'example_config/fewshot_meta_config.json'
python fewshot_finaltrain_eval.py --config 'example_config/fewshot_finaltrain_config.json'

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%