-
Notifications
You must be signed in to change notification settings - Fork 0
/
dot-product.sv
1671 lines (1564 loc) · 42 KB
/
dot-product.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* verilator lint_off MULTITOP */
/// =================== Unsigned, Fixed Point =========================
module std_fp_add #(
parameter WIDTH = 32,
parameter INT_WIDTH = 16,
parameter FRAC_WIDTH = 16
) (
input logic [WIDTH-1:0] left,
input logic [WIDTH-1:0] right,
output logic [WIDTH-1:0] out
);
assign out = left + right;
endmodule
module std_fp_sub #(
parameter WIDTH = 32,
parameter INT_WIDTH = 16,
parameter FRAC_WIDTH = 16
) (
input logic [WIDTH-1:0] left,
input logic [WIDTH-1:0] right,
output logic [WIDTH-1:0] out
);
assign out = left - right;
endmodule
module std_fp_mult_pipe #(
parameter WIDTH = 32,
parameter INT_WIDTH = 16,
parameter FRAC_WIDTH = 16,
parameter SIGNED = 0
) (
input logic [WIDTH-1:0] left,
input logic [WIDTH-1:0] right,
input logic go,
input logic clk,
input logic reset,
output logic [WIDTH-1:0] out,
output logic done
);
logic [WIDTH-1:0] rtmp;
logic [WIDTH-1:0] ltmp;
logic [(WIDTH << 1) - 1:0] out_tmp;
// Buffer used to walk through the 3 cycles of the pipeline.
logic done_buf[2:0];
assign done = done_buf[2];
assign out = out_tmp[(WIDTH << 1) - INT_WIDTH - 1 : WIDTH - INT_WIDTH];
// If the done buffer is completely empty and go is high then execution
// just started.
logic start;
assign start = go & done_buf[0] == 0 & done_buf[1] == 0;
// Start sending the done signal.
always_ff @(posedge clk) begin
if (start)
done_buf[0] <= 1;
else
done_buf[0] <= 0;
end
// Push the done signal through the pipeline.
always_ff @(posedge clk) begin
if (go) begin
done_buf[2] <= done_buf[1];
done_buf[1] <= done_buf[0];
end else begin
done_buf[2] <= 0;
done_buf[1] <= 0;
end
end
// Move the multiplication computation through the pipeline.
always_ff @(posedge clk) begin
if (reset) begin
rtmp <= 0;
ltmp <= 0;
out_tmp <= 0;
end else if (go) begin
if (SIGNED) begin
rtmp <= $signed(right);
ltmp <= $signed(left);
out_tmp <= $signed(
{ {WIDTH{ltmp[WIDTH-1]}}, ltmp} *
{ {WIDTH{rtmp[WIDTH-1]}}, rtmp}
);
end else begin
rtmp <= right;
ltmp <= left;
out_tmp <= ltmp * rtmp;
end
end else begin
rtmp <= 0;
ltmp <= 0;
out_tmp <= out_tmp;
end
end
endmodule
/* verilator lint_off WIDTH */
module std_fp_div_pipe #(
parameter WIDTH = 32,
parameter INT_WIDTH = 16,
parameter FRAC_WIDTH = 16
) (
input logic go,
input logic clk,
input logic reset,
input logic [WIDTH-1:0] left,
input logic [WIDTH-1:0] right,
output logic [WIDTH-1:0] out_remainder,
output logic [WIDTH-1:0] out_quotient,
output logic done
);
localparam ITERATIONS = WIDTH + FRAC_WIDTH;
logic [WIDTH-1:0] quotient, quotient_next;
logic [WIDTH:0] acc, acc_next;
logic [$clog2(ITERATIONS)-1:0] idx;
logic start, running, finished, dividend_is_zero;
assign start = go && !running;
assign dividend_is_zero = start && left == 0;
assign finished = idx == ITERATIONS - 1 && running;
always_ff @(posedge clk) begin
if (reset || finished || dividend_is_zero)
running <= 0;
else if (start)
running <= 1;
else
running <= running;
end
always_comb begin
if (acc >= {1'b0, right}) begin
acc_next = acc - right;
{acc_next, quotient_next} = {acc_next[WIDTH-1:0], quotient, 1'b1};
end else begin
{acc_next, quotient_next} = {acc, quotient} << 1;
end
end
// `done` signaling
always_ff @(posedge clk) begin
if (dividend_is_zero || finished)
done <= 1;
else
done <= 0;
end
always_ff @(posedge clk) begin
if (running)
idx <= idx + 1;
else
idx <= 0;
end
always_ff @(posedge clk) begin
if (reset) begin
out_quotient <= 0;
out_remainder <= 0;
end else if (start) begin
out_quotient <= 0;
out_remainder <= left;
end else if (go == 0) begin
out_quotient <= out_quotient;
out_remainder <= out_remainder;
end else if (dividend_is_zero) begin
out_quotient <= 0;
out_remainder <= 0;
end else if (finished) begin
out_quotient <= quotient_next;
out_remainder <= out_remainder;
end else begin
out_quotient <= out_quotient;
if (right <= out_remainder)
out_remainder <= out_remainder - right;
else
out_remainder <= out_remainder;
end
end
always_ff @(posedge clk) begin
if (reset) begin
acc <= 0;
quotient <= 0;
end else if (start) begin
{acc, quotient} <= {{WIDTH{1'b0}}, left, 1'b0};
end else begin
acc <= acc_next;
quotient <= quotient_next;
end
end
endmodule
module std_fp_gt #(
parameter WIDTH = 32,
parameter INT_WIDTH = 16,
parameter FRAC_WIDTH = 16
) (
input logic [WIDTH-1:0] left,
input logic [WIDTH-1:0] right,
output logic out
);
assign out = left > right;
endmodule
/// =================== Signed, Fixed Point =========================
module std_fp_sadd #(
parameter WIDTH = 32,
parameter INT_WIDTH = 16,
parameter FRAC_WIDTH = 16
) (
input signed [WIDTH-1:0] left,
input signed [WIDTH-1:0] right,
output signed [WIDTH-1:0] out
);
assign out = $signed(left + right);
endmodule
module std_fp_ssub #(
parameter WIDTH = 32,
parameter INT_WIDTH = 16,
parameter FRAC_WIDTH = 16
) (
input signed [WIDTH-1:0] left,
input signed [WIDTH-1:0] right,
output signed [WIDTH-1:0] out
);
assign out = $signed(left - right);
endmodule
module std_fp_smult_pipe #(
parameter WIDTH = 32,
parameter INT_WIDTH = 16,
parameter FRAC_WIDTH = 16
) (
input [WIDTH-1:0] left,
input [WIDTH-1:0] right,
input logic reset,
input logic go,
input logic clk,
output logic [WIDTH-1:0] out,
output logic done
);
std_fp_mult_pipe #(
.WIDTH(WIDTH),
.INT_WIDTH(INT_WIDTH),
.FRAC_WIDTH(FRAC_WIDTH),
.SIGNED(1)
) comp (
.clk(clk),
.done(done),
.reset(reset),
.go(go),
.left(left),
.right(right),
.out(out)
);
endmodule
module std_fp_sdiv_pipe #(
parameter WIDTH = 32,
parameter INT_WIDTH = 16,
parameter FRAC_WIDTH = 16
) (
input clk,
input go,
input reset,
input signed [WIDTH-1:0] left,
input signed [WIDTH-1:0] right,
output signed [WIDTH-1:0] out_quotient,
output signed [WIDTH-1:0] out_remainder,
output logic done
);
logic signed [WIDTH-1:0] left_abs, right_abs, comp_out_q, comp_out_r, right_save, out_rem_intermediate;
// Registers to figure out how to transform outputs.
logic different_signs, left_sign, right_sign;
// Latch the value of control registers so that their available after
// go signal becomes low.
always_ff @(posedge clk) begin
if (go) begin
right_save <= right_abs;
left_sign <= left[WIDTH-1];
right_sign <= right[WIDTH-1];
end else begin
left_sign <= left_sign;
right_save <= right_save;
right_sign <= right_sign;
end
end
assign right_abs = right[WIDTH-1] ? -right : right;
assign left_abs = left[WIDTH-1] ? -left : left;
assign different_signs = left_sign ^ right_sign;
assign out_quotient = different_signs ? -comp_out_q : comp_out_q;
// Remainder is computed as:
// t0 = |left| % |right|
// t1 = if left * right < 0 and t0 != 0 then |right| - t0 else t0
// rem = if right < 0 then -t1 else t1
assign out_rem_intermediate = different_signs & |comp_out_r ? $signed(right_save - comp_out_r) : comp_out_r;
assign out_remainder = right_sign ? -out_rem_intermediate : out_rem_intermediate;
std_fp_div_pipe #(
.WIDTH(WIDTH),
.INT_WIDTH(INT_WIDTH),
.FRAC_WIDTH(FRAC_WIDTH)
) comp (
.reset(reset),
.clk(clk),
.done(done),
.go(go),
.left(left_abs),
.right(right_abs),
.out_quotient(comp_out_q),
.out_remainder(comp_out_r)
);
endmodule
module std_fp_sgt #(
parameter WIDTH = 32,
parameter INT_WIDTH = 16,
parameter FRAC_WIDTH = 16
) (
input logic signed [WIDTH-1:0] left,
input logic signed [WIDTH-1:0] right,
output logic signed out
);
assign out = $signed(left > right);
endmodule
module std_fp_slt #(
parameter WIDTH = 32,
parameter INT_WIDTH = 16,
parameter FRAC_WIDTH = 16
) (
input logic signed [WIDTH-1:0] left,
input logic signed [WIDTH-1:0] right,
output logic signed out
);
assign out = $signed(left < right);
endmodule
/// =================== Unsigned, Bitnum =========================
module std_mult_pipe #(
parameter WIDTH = 32
) (
input logic [WIDTH-1:0] left,
input logic [WIDTH-1:0] right,
input logic reset,
input logic go,
input logic clk,
output logic [WIDTH-1:0] out,
output logic done
);
std_fp_mult_pipe #(
.WIDTH(WIDTH),
.INT_WIDTH(WIDTH),
.FRAC_WIDTH(0),
.SIGNED(0)
) comp (
.reset(reset),
.clk(clk),
.done(done),
.go(go),
.left(left),
.right(right),
.out(out)
);
endmodule
module std_div_pipe #(
parameter WIDTH = 32
) (
input reset,
input clk,
input go,
input [WIDTH-1:0] left,
input [WIDTH-1:0] right,
output logic [WIDTH-1:0] out_remainder,
output logic [WIDTH-1:0] out_quotient,
output logic done
);
logic [WIDTH-1:0] dividend;
logic [(WIDTH-1)*2:0] divisor;
logic [WIDTH-1:0] quotient;
logic [WIDTH-1:0] quotient_msk;
logic start, running, finished, dividend_is_zero;
assign start = go && !running;
assign finished = quotient_msk == 0 && running;
assign dividend_is_zero = start && left == 0;
always_ff @(posedge clk) begin
// Early return if the divisor is zero.
if (finished || dividend_is_zero)
done <= 1;
else
done <= 0;
end
always_ff @(posedge clk) begin
if (reset || finished || dividend_is_zero)
running <= 0;
else if (start)
running <= 1;
else
running <= running;
end
// Outputs
always_ff @(posedge clk) begin
if (dividend_is_zero || start) begin
out_quotient <= 0;
out_remainder <= 0;
end else if (finished) begin
out_quotient <= quotient;
out_remainder <= dividend;
end else begin
// Otherwise, explicitly latch the values.
out_quotient <= out_quotient;
out_remainder <= out_remainder;
end
end
// Calculate the quotient mask.
always_ff @(posedge clk) begin
if (start)
quotient_msk <= 1 << WIDTH - 1;
else if (running)
quotient_msk <= quotient_msk >> 1;
else
quotient_msk <= quotient_msk;
end
// Calculate the quotient.
always_ff @(posedge clk) begin
if (start)
quotient <= 0;
else if (divisor <= dividend)
quotient <= quotient | quotient_msk;
else
quotient <= quotient;
end
// Calculate the dividend.
always_ff @(posedge clk) begin
if (start)
dividend <= left;
else if (divisor <= dividend)
dividend <= dividend - divisor;
else
dividend <= dividend;
end
always_ff @(posedge clk) begin
if (start) begin
divisor <= right << WIDTH - 1;
end else if (finished) begin
divisor <= 0;
end else begin
divisor <= divisor >> 1;
end
end
// Simulation self test against unsynthesizable implementation.
`ifdef VERILATOR
logic [WIDTH-1:0] l, r;
always_ff @(posedge clk) begin
if (go) begin
l <= left;
r <= right;
end else begin
l <= l;
r <= r;
end
end
always @(posedge clk) begin
if (done && $unsigned(out_remainder) != $unsigned(l % r))
$error(
"\nstd_div_pipe (Remainder): Computed and golden outputs do not match!\n",
"left: %0d", $unsigned(l),
" right: %0d\n", $unsigned(r),
"expected: %0d", $unsigned(l % r),
" computed: %0d", $unsigned(out_remainder)
);
if (done && $unsigned(out_quotient) != $unsigned(l / r))
$error(
"\nstd_div_pipe (Quotient): Computed and golden outputs do not match!\n",
"left: %0d", $unsigned(l),
" right: %0d\n", $unsigned(r),
"expected: %0d", $unsigned(l / r),
" computed: %0d", $unsigned(out_quotient)
);
end
`endif
endmodule
/// =================== Signed, Bitnum =========================
module std_sadd #(
parameter WIDTH = 32
) (
input signed [WIDTH-1:0] left,
input signed [WIDTH-1:0] right,
output signed [WIDTH-1:0] out
);
assign out = $signed(left + right);
endmodule
module std_ssub #(
parameter WIDTH = 32
) (
input signed [WIDTH-1:0] left,
input signed [WIDTH-1:0] right,
output signed [WIDTH-1:0] out
);
assign out = $signed(left - right);
endmodule
module std_smult_pipe #(
parameter WIDTH = 32
) (
input logic reset,
input logic go,
input logic clk,
input signed [WIDTH-1:0] left,
input signed [WIDTH-1:0] right,
output logic signed [WIDTH-1:0] out,
output logic done
);
std_fp_mult_pipe #(
.WIDTH(WIDTH),
.INT_WIDTH(WIDTH),
.FRAC_WIDTH(0),
.SIGNED(1)
) comp (
.reset(reset),
.clk(clk),
.done(done),
.go(go),
.left(left),
.right(right),
.out(out)
);
endmodule
/* verilator lint_off WIDTH */
module std_sdiv_pipe #(
parameter WIDTH = 32
) (
input reset,
input clk,
input go,
input logic signed [WIDTH-1:0] left,
input logic signed [WIDTH-1:0] right,
output logic signed [WIDTH-1:0] out_quotient,
output logic signed [WIDTH-1:0] out_remainder,
output logic done
);
logic signed [WIDTH-1:0] left_abs, right_abs, comp_out_q, comp_out_r, right_save, out_rem_intermediate;
// Registers to figure out how to transform outputs.
logic different_signs, left_sign, right_sign;
// Latch the value of control registers so that their available after
// go signal becomes low.
always_ff @(posedge clk) begin
if (go) begin
right_save <= right_abs;
left_sign <= left[WIDTH-1];
right_sign <= right[WIDTH-1];
end else begin
left_sign <= left_sign;
right_save <= right_save;
right_sign <= right_sign;
end
end
assign right_abs = right[WIDTH-1] ? -right : right;
assign left_abs = left[WIDTH-1] ? -left : left;
assign different_signs = left_sign ^ right_sign;
assign out_quotient = different_signs ? -comp_out_q : comp_out_q;
// Remainder is computed as:
// t0 = |left| % |right|
// t1 = if left * right < 0 and t0 != 0 then |right| - t0 else t0
// rem = if right < 0 then -t1 else t1
assign out_rem_intermediate = different_signs & |comp_out_r ? $signed(right_save - comp_out_r) : comp_out_r;
assign out_remainder = right_sign ? -out_rem_intermediate : out_rem_intermediate;
std_div_pipe #(
.WIDTH(WIDTH)
) comp (
.reset(reset),
.clk(clk),
.done(done),
.go(go),
.left(left_abs),
.right(right_abs),
.out_quotient(comp_out_q),
.out_remainder(comp_out_r)
);
// Simulation self test against unsynthesizable implementation.
`ifdef VERILATOR
logic signed [WIDTH-1:0] l, r;
always_ff @(posedge clk) begin
if (go) begin
l <= left;
r <= right;
end else begin
l <= l;
r <= r;
end
end
always @(posedge clk) begin
if (done && out_quotient != $signed(l / r))
$error(
"\nstd_sdiv_pipe (Quotient): Computed and golden outputs do not match!\n",
"left: %0d", l,
" right: %0d\n", r,
"expected: %0d", $signed(l / r),
" computed: %0d", $signed(out_quotient),
);
if (done && out_remainder != $signed(((l % r) + r) % r))
$error(
"\nstd_sdiv_pipe (Remainder): Computed and golden outputs do not match!\n",
"left: %0d", l,
" right: %0d\n", r,
"expected: %0d", $signed(((l % r) + r) % r),
" computed: %0d", $signed(out_remainder),
);
end
`endif
endmodule
module std_sgt #(
parameter WIDTH = 32
) (
input signed [WIDTH-1:0] left,
input signed [WIDTH-1:0] right,
output signed out
);
assign out = $signed(left > right);
endmodule
module std_slt #(
parameter WIDTH = 32
) (
input signed [WIDTH-1:0] left,
input signed [WIDTH-1:0] right,
output signed out
);
assign out = $signed(left < right);
endmodule
module std_seq #(
parameter WIDTH = 32
) (
input signed [WIDTH-1:0] left,
input signed [WIDTH-1:0] right,
output signed out
);
assign out = $signed(left == right);
endmodule
module std_sneq #(
parameter WIDTH = 32
) (
input signed [WIDTH-1:0] left,
input signed [WIDTH-1:0] right,
output signed out
);
assign out = $signed(left != right);
endmodule
module std_sge #(
parameter WIDTH = 32
) (
input signed [WIDTH-1:0] left,
input signed [WIDTH-1:0] right,
output signed out
);
assign out = $signed(left >= right);
endmodule
module std_sle #(
parameter WIDTH = 32
) (
input signed [WIDTH-1:0] left,
input signed [WIDTH-1:0] right,
output signed out
);
assign out = $signed(left <= right);
endmodule
module std_slsh #(
parameter WIDTH = 32
) (
input signed [WIDTH-1:0] left,
input signed [WIDTH-1:0] right,
output signed [WIDTH-1:0] out
);
assign out = left <<< right;
endmodule
module std_srsh #(
parameter WIDTH = 32
) (
input signed [WIDTH-1:0] left,
input signed [WIDTH-1:0] right,
output signed [WIDTH-1:0] out
);
assign out = left >>> right;
endmodule
/**
* Core primitives for Calyx.
* Implements core primitives used by the compiler.
*
* Conventions:
* - All parameter names must be SNAKE_CASE and all caps.
* - Port names must be snake_case, no caps.
*/
`default_nettype none
module std_const #(
parameter WIDTH = 32,
parameter VALUE = 0
) (
output logic [WIDTH - 1:0] out
);
assign out = VALUE;
endmodule
module std_wire #(
parameter WIDTH = 32
) (
input wire logic [WIDTH - 1:0] in,
output logic [WIDTH - 1:0] out
);
assign out = in;
endmodule
module std_slice #(
parameter IN_WIDTH = 32,
parameter OUT_WIDTH = 32
) (
input wire logic [ IN_WIDTH-1:0] in,
output logic [OUT_WIDTH-1:0] out
);
assign out = in[OUT_WIDTH-1:0];
`ifdef VERILATOR
always_comb begin
if (IN_WIDTH < OUT_WIDTH)
$error(
"std_slice: Input width less than output width\n",
"IN_WIDTH: %0d", IN_WIDTH,
"OUT_WIDTH: %0d", OUT_WIDTH
);
end
`endif
endmodule
module std_pad #(
parameter IN_WIDTH = 32,
parameter OUT_WIDTH = 32
) (
input wire logic [IN_WIDTH-1:0] in,
output logic [OUT_WIDTH-1:0] out
);
localparam EXTEND = OUT_WIDTH - IN_WIDTH;
assign out = { {EXTEND {1'b0}}, in};
`ifdef VERILATOR
always_comb begin
if (IN_WIDTH > OUT_WIDTH)
$error(
"std_pad: Output width less than input width\n",
"IN_WIDTH: %0d", IN_WIDTH,
"OUT_WIDTH: %0d", OUT_WIDTH
);
end
`endif
endmodule
module std_not #(
parameter WIDTH = 32
) (
input wire logic [WIDTH-1:0] in,
output logic [WIDTH-1:0] out
);
assign out = ~in;
endmodule
module std_and #(
parameter WIDTH = 32
) (
input wire logic [WIDTH-1:0] left,
input wire logic [WIDTH-1:0] right,
output logic [WIDTH-1:0] out
);
assign out = left & right;
endmodule
module std_or #(
parameter WIDTH = 32
) (
input wire logic [WIDTH-1:0] left,
input wire logic [WIDTH-1:0] right,
output logic [WIDTH-1:0] out
);
assign out = left | right;
endmodule
module std_xor #(
parameter WIDTH = 32
) (
input wire logic [WIDTH-1:0] left,
input wire logic [WIDTH-1:0] right,
output logic [WIDTH-1:0] out
);
assign out = left ^ right;
endmodule
module std_add #(
parameter WIDTH = 32
) (
input wire logic [WIDTH-1:0] left,
input wire logic [WIDTH-1:0] right,
output logic [WIDTH-1:0] out
);
assign out = left + right;
endmodule
module std_sub #(
parameter WIDTH = 32
) (
input wire logic [WIDTH-1:0] left,
input wire logic [WIDTH-1:0] right,
output logic [WIDTH-1:0] out
);
assign out = left - right;
endmodule
module std_gt #(
parameter WIDTH = 32
) (
input wire logic [WIDTH-1:0] left,
input wire logic [WIDTH-1:0] right,
output logic out
);
assign out = left > right;
endmodule
module std_lt #(
parameter WIDTH = 32
) (
input wire logic [WIDTH-1:0] left,
input wire logic [WIDTH-1:0] right,
output logic out
);
assign out = left < right;
endmodule
module std_eq #(
parameter WIDTH = 32
) (
input wire logic [WIDTH-1:0] left,
input wire logic [WIDTH-1:0] right,
output logic out
);
assign out = left == right;
endmodule
module std_neq #(
parameter WIDTH = 32
) (
input wire logic [WIDTH-1:0] left,
input wire logic [WIDTH-1:0] right,
output logic out
);
assign out = left != right;
endmodule
module std_ge #(
parameter WIDTH = 32
) (
input wire logic [WIDTH-1:0] left,
input wire logic [WIDTH-1:0] right,
output logic out
);
assign out = left >= right;
endmodule
module std_le #(
parameter WIDTH = 32
) (
input wire logic [WIDTH-1:0] left,
input wire logic [WIDTH-1:0] right,
output logic out
);
assign out = left <= right;
endmodule
module std_lsh #(
parameter WIDTH = 32
) (
input wire logic [WIDTH-1:0] left,
input wire logic [WIDTH-1:0] right,
output logic [WIDTH-1:0] out
);
assign out = left << right;
endmodule
module std_rsh #(
parameter WIDTH = 32
) (
input wire logic [WIDTH-1:0] left,
input wire logic [WIDTH-1:0] right,
output logic [WIDTH-1:0] out
);
assign out = left >> right;
endmodule
/// this primitive is intended to be used
/// for lowering purposes (not in source programs)
module std_mux #(
parameter WIDTH = 32
) (
input wire logic cond,
input wire logic [WIDTH-1:0] tru,
input wire logic [WIDTH-1:0] fal,
output logic [WIDTH-1:0] out
);
assign out = cond ? tru : fal;
endmodule
/// Memories
module std_reg #(
parameter WIDTH = 32
) (
input wire [ WIDTH-1:0] in,
input wire write_en,
input wire clk,
input wire reset,
// output
output logic [WIDTH - 1:0] out,
output logic done
);
always_ff @(posedge clk) begin
if (reset) begin
out <= 0;
done <= 0;
end else if (write_en) begin
out <= in;
done <= 1'd1;
end else done <= 1'd0;
end
endmodule
module std_mem_d1 #(
parameter WIDTH = 32,
parameter SIZE = 16,
parameter IDX_SIZE = 4
) (
input wire logic [IDX_SIZE-1:0] addr0,
input wire logic [ WIDTH-1:0] write_data,
input wire logic write_en,
input wire logic clk,
output logic [ WIDTH-1:0] read_data,
output logic done
);
logic [WIDTH-1:0] mem[SIZE-1:0];
/* verilator lint_off WIDTH */
assign read_data = mem[addr0];
always_ff @(posedge clk) begin
if (write_en) begin
mem[addr0] <= write_data;
done <= 1'd1;
end else done <= 1'd0;
end