A neural network architecture that is fully volume preserving including the coupled chebyshev volume preserving activation function.
This is the implementation of the paper:
G. MacDonald, A. Godbout, B. Gillcash, and S. Cairns. Volume Preserving Neural Networks: A Solution to the Vanishing Gradient Problem. (2019)
link to paper (arXix preprint): https://arxiv.org/abs/1911.09576
If you use this code, please cite (arXiv preprint):
@misc{macdonald2019volumepreserving,
title={Volume-preserving Neural Networks: A Solution to the Vanishing Gradient Problem},
author={Gordon MacDonald and Andrew Godbout and Bryn Gillcash and Stephanie Cairns},
year={2019},
eprint={1911.09576},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
-demo_mnist jupyter notebook provides a demonstration of the VPNN on the MNIST dataset
- Torch 1.1.0
- torchvision 0.3.0
- matplotlib 3.1.1
- numpy
- nltk
- jupyter
- sklearn
- seaborn