Skip to content

This library provides tools and methods for astronomical calculations. With this bundle it is possible to calculate the position of moon, sun and planets and several coordinate systems. For a higher accuracy, several corrections, like nutation and precision, were taken into account. It is also possible to calculate rise, set and culmination even…

Notifications You must be signed in to change notification settings

andrmoel/astronomy-bundle-js

Repository files navigation

Astronomy Bundle

This library provides tools and methods for astronomical calculations. With this bundle it is possible to calculate the position of moon, sun and planets and several coordinate systems. For a higher accuracy, several corrections, like nutation and precision, were taken into account. It is also possible to calculate rise, set and culmination events for celestial objects. For a detailed see the table of contents.

Most of the calculations base on Jean Meeus 'Astronomical Algorithms' book and the VSOP87 theory.

Table of Contents

  1. Installation
  2. Angle Utils
  3. Time of Interest
    1. Create Time Of Interest
    2. Calendar methods
    3. Julian Day, Centuries and Millennia
    4. Greenwich and Local Sidereal Time
    5. Delta T
  4. Location
    1. Distance between two locations
  5. Astronomical Objects
    1. Coordinates
  6. Earth
    1. Position of the Earth
    2. Nutation in Longitude and Obliquity
    3. Obliquity of Ecliptic
  7. Sun
    1. Position of the Sun
    2. Distance to Earth and Diameter
    3. Sunrise, Sunset and Transit
  8. Moon
    1. Position of the Moon
    2. Distance to Earth and Diameter
    3. Moonrise, Moonset and Transit
    4. Phases
    5. Apparent Magnitude
    6. Physical Observation
    7. Libration
    8. Golden Handle, Lunar X and V
  9. Planets
    1. Position of Planets
    2. Distance to Earth and Diameter
    3. Phases
    4. Apparent Magnitude
    5. Physical Observation
    6. Conjunction
  10. Stars
  11. Position of Stars
  12. Solar Eclipse
  13. Solar Eclipse exists
  14. Greatest Eclipse
  15. Observational Circumstances
  16. Satellites
  17. Two Line Elements

Installation

You can install the astronomy-bundle using npm:

npm i astronomy-bundle

or yarn:

yarn add astronomy-bundle

Angle Utils

The angle util provides helper methods to convert an angle into different formats.

Example 1: Convert decimal angle

import {angleCalc} from 'astronomy-bundle/utils';

const angleInDeg = 132.6029282;

const angleStr = angleCalc.deg2angle(angleInDeg);
const timeStr = angleCalc.deg2time(angleInDeg);

The result of the calculation should be:
Angle: 132° 36' 10.542"
Time: 8h 50m 24.703s

Example 2: Convert time into decimal format

import {angleCalc} from 'astronomy-bundle/utils';

const timeStr = '8h 50m 24.703s';

const angleInDeg = angleCalc.time2deg(timeStr);

The result of the calculation should be:
Angle: 132.602929°

Time of Interest

The TimeOfInterest (TOI) object represents the time for which all the astronomical calculations are done. For that reason it is the most important object in this library.

Create the TimeOfInterest object

There are several ways to initialize the TOI object.

Example 1: Initialize the TimeOfInterest object for the date 02 July 2017 at 15:30:00 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';

// Create from time
const toi = createTimeOfInterest.fromTime(2017, 7, 2, 15, 30, 0);

// Create from Date object
const date = new Date('2017-07-02 15:30:00');
const toi = createTimeOfInterest.fromDate(date);

// Create from Julian Day
const jd = 2457937.1458333;
const toi = createTimeOfInterest.fromJulianDay(jd);

// Create from Julian Centuries since J2000
const T = 0.17500741501255;
const toi = createTimeOfInterest.fromJulianCenturiesJ2000(T);

The result will be always: 2017-07-02 15:30:00

Example 2: Create the TOI object for the current date and time in UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';

const toi = createTimeOfInterest.fromCurrentTime();

Calendar methods

Legend for day of the week:

Value Day of week
0 Sunday
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday
6 Saturday

Example: Get day of year, day of week and leap year for 02 July 2017 at 13:37 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';

const toi = createTimeOfInterest.fromTime(2017, 7, 2, 13, 37, 0);

const dayOfYear = toi.getDayOfYear();
const dayOfWeek = toi.getDayOfWeek();
const isLeapYear = toi.isLeapYear();

The result of the calculation should be:
Day of year: 183
Day of week: 0 (Sunday)
Is leap year: false

Julian Day, Julian Centuries and Julian Millennia

Example: Get Julian Day, Julian Centuries and Julian Millennia for 02 July 2017 at 13:37 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';

const toi = createTimeOfInterest.fromTime(2017, 7, 2, 13, 37, 0);

const jd = toi.getJulianDay();
const jd0 = toi.getJulianDay0();
const T = toi.getJulianCenturiesJ2000();
const t = toi.getJulianMillenniaJ2000();

The result of the calculation should be:
Julian Day: 2457937.0673611
Julian Day 0: 2457936.5
Julian Centuries J2000: 0.1750052666
Julian Millennia J2000: 0.0175005267

Greenwich Sidereal Time and Local Sidereal Time

Example 1: Get Greenwich Sidereal Time for 02 July 2017 at 13:37 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';

const toi = createTimeOfInterest.fromTime(2017, 7, 2, 13, 37, 0);

const GMST = toi.getGreenwichMeanSiderealTime();
const GAST = toi.getGreenwichApparentSiderealTime();

// To express the angle in time format use angleCalc.deg2time(GMST)

The result of the calculation should be:
GMST: 5h 44m 46.48s
GAST: 5h 44m 45.47s

Example 2: Get Local Sidereal Time for 02 July 2017 at 13:37 UTC in Berlin, Germany

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createLocation} from 'astronomy-bundle/earth';

const toi = createTimeOfInterest.fromTime(2017, 7, 2, 13, 37, 0);
const location = createLocation(52.52, 13.41);

const LMST = toi.getLocalMeanSiderealTime(location);
const LAST = toi.getLocalApparentSiderealTime(location);

// To express the angle in time format use angleCalc.deg2time(LMST)

The result of the calculation should be:
LMST: 9h 13m 46.798s
LAST: 9h 13m 46.232s

Delta T

Example: Get Delta T for 20 May 2000 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';

const toi = createTimeOfInterest.fromTime(2000, 5, 20, 0, 0, 0);

const deltaT = toi.getDeltaT();

The result of the calculation should be:
Delta T: 64

Location

Distance between two locations

Example: Calculate the distance between the Eiffel Tower and the Washington Monument in km

import {createLocation} from 'astronomy-bundle/earth';

const locationParis = createLocation(48.858272, 2.29447);
const locationWashingtonDc = createLocation(38.889514, -77.035193);

const distanceInKm = locationParis.getDistanceToInKm(locationWashingtonDc);

The result of the calculation should be: 6177.93 km

Astronomical Objects

An astronomical object should be initialized with the TOI. If you don't pass the TOI in the constructor, the current time is chosen.

Example 1: Create an astronomical object with TOI

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createMoon} from 'astronomy-bundle/moon';

const toi = createTimeOfInterest.fromCurrentTime();

const moon = createMoon(toi);

Example 2: Create an astronomical object without TOI. The chosen TOI corresponds to the current time

import {createMoon} from 'astronomy-bundle/moon';

const moon = createMoon();

Coordinates of Astronomical Objects

Explanation of different Coordinate Systems used

Center of coordinate system

  • Heliocentric (Sun is center of coordinate system)
  • Geocentric (Earth is center of coordinate system)
  • Topocentric (Observer's location is center of coordinate system)

Coordinate system type

  • Ecliptic Rectangular (x, y, z)
  • Ecliptic Spherical (lon, lat, radiusVector)
  • Equatorial Spherical (rightAscension, declination, radiusVector)
  • Horizontal (azimuth, altitude, radiusVector)

Usable Methods in objects

Each object (e.g. Moon, Sun, Venus, Jupiter, ...) provides the following methods to get their coordinates in space:

Heliocentric coordinates
getHeliocentricEclipticRectangularJ2000Coordinates()
getHeliocentricEclipticRectangularDateCoordinates()
getHeliocentricEclipticSphericalJ2000Coordinates()
getHeliocentricEclipticSphericalDateCoordinates()
Geocentric coordinates
getGeocentricEclipticRectangularJ2000Coordinates()
getGeocentricEclipticRectangularDateCoordinates()
getGeocentricEclipticSphericalJ2000Coordinates()
getGeocentricEclipticSphericalDateCoordinates()
getGeocentricEquatorialSphericalJ2000Coordinates()
getGeocentricEquatorialSphericalDateCoordinates()
getApparentGeocentricRectangularCoordinates() // Corrected by light time, abberation & nutation
getApparentGeocentricEclipticSphericalCoordinates() // Corrected by light time, abberation & nutation
getApparentGeocentricEquatorialSphericalCoordinates() // Corrected by light time, abberation & nutation
Topocentric coordinates
getTopocentricEquatorialSphericalCoordinates(location)
getTopocentricHorizontalCoordinates(location)
getApparentTopocentricHorizontalCoordinates(location) // Corrected by atmospheric refraction

Earth

This library uses the VSOP87 theory to calculate precise planetary positions. Each calculation uses terms with a heavy file size of several kilobytes. For that reason all VSOP87 calculations will load asynchronous and only when they are used. All coordinate methods do return a Promise.

Position of the Earth

Example: Calculate the heliocentric position (J2000) of the Earth for 10 December 2017 at 00:00 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createEarth} from 'astronomy-bundle/earth';

const toi = createTimeOfInterest.fromTime(2017, 12, 10, 0, 0, 0);
const earth = createEarth(toi);

const {x, y, z} = await earth.getHeliocentricEclipticRectangularJ2000Coordinates();
const {lon, lat, radiusVector} = await earth.getHeliocentricEclipticSphericalJ2000Coordinates();

The result of the calculation should be:

x: 0.2070104
y: 0.96282379
z: -0.00004247

Longitude: 77° 51' 57.357"
Latitude: -0° 00' 08.895"
Radius Vector: 0.98482636

Nutation in Longitude and Obliquity

Example: Get nutation in Longitude and Obliquity for 01 August 2020 at 16:51:54 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createEarth} from 'astronomy-bundle/earth';

const toi = createTimeOfInterest.fromTime(2020, 8, 1, 16, 51, 54);
const earth = createEarth(toi);

const phi = earth.getNutationInLongitude();
const e = earth.getNutationInObliquity();

// To express the angle in string format use angleCalc.deg2angle(p)

The result of the calculation should be:

Nutation in Longitude: -0° 00' 15.807"
Nutation in Obliquity: 0° 00' 00.395"

Obliquity of Ecliptic

Example: Get Mean and True Obliquity of Ecliptic for 01 August 2020 at 16:51:54 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createEarth} from 'astronomy-bundle/earth';

const toi = createTimeOfInterest.fromTime(2020, 8, 1, 16, 51, 54);
const earth = createEarth(toi);

const eps0 = earth.getMeanObliquityOfEcliptic();
const eps = earth.getTrueObliquityOfEcliptic();

// To express the angle in string format use angleCalc.deg2angle(eps)

The result of the calculation should be:

Mean Obliquity of Ecliptic: 23° 26' 11.813"
True Obliquity of Ecliptic: 23° 26' 12.208"

Sun

This library uses the VSOP87 theory to calculate precise planetary positions. Each calculation uses terms with a heavy file size of several kilobytes. For that reason all VSOP87 calculations will load asynchronous and only when they are used. All coordinate methods do return a Promise.

Position of the Sun

Example: Get the position of the Sun (Date) for 10 October 2020 at 06:15 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createSun} from 'astronomy-bundle/sun';

const toi = createTimeOfInterest.fromTime(2020, 10, 10, 6, 15, 0);
const sun = createSun(toi);

const geoEclCoords = await sun.getGeocentricEclipticSphericalDateCoordinates();
const geoAppEquCoords = await sun.getApparentGeocentricEquatorialSphericalCoordinates()

The result should be:

Longitude: 209.31555315°
Latitude: -0.00014017°
Radius Vector: 0.99514386

Right Ascension: 207.25282342°
Declination: -11.22796087°
Radius Vector: 0.99514386

Distance to Earth and diameter of the Sun

Example 1: Get distance and diameter of the sun for the current date and time

import {createSun} from 'astronomy-bundle/sun';

const sun = createSun();

const distance = await sun.getDistanceToEarth();
const delta = await sun.getAngularDiameter();

The result should be:
The distance is between 147.1 mio and 152.1 mio kilometers.
The angular diameter is about 32'

Example 2: Get the distance and diameter of the Sun for 05 June 2017 at 20:30 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createSun} from 'astronomy-bundle/createSun';

const toi = createTimeOfInterest.fromTime(2017, 6, 5, 20, 30, 0);
const sun = createSun(toi);

const distance = await sun.getDistanceToEarth();
const delta = await sun.getAngularDiameter();

The result should be:

Distance: 151797423.98 km
Diameter: 0° 31' 32.43"

Sunrise, Sunset and Transit

The used standard altitudes for sunset and sunrise consider the effect of atmospheric refraction and are given as:

  • Sun's center: -0.583°
  • Sun's upper limb: -0.833°

Example: Get the rise, set and transit of the Sun on 20. November 2020 in Berlin, Germany

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createSun} from 'astronomy-bundle/sun';

const location = {
    lat: 52.519,
    lon: 13.408,
};

const toi = createTimeOfInterest.fromTime(2020, 11, 20, 0, 0, 0);
const sun = createSun(toi);

const toiRiseUpperLimb = await sun.getRiseUpperLimb(location);
const toiRiseCenter = await sun.getRise(location);
const toiTransit = await sun.getTransit(location);
const toiSetCenter = await sun.getSet(location);
const toiSetUpperLimb = await sun.getSetUpperLimb(location);

The result should be:

Sunrise (upper limb): 06:37:31 UTC
Sunrise (disk's center): 06:39:28 UTC
Transit: 11:52:04 UTC
Sunset (disk's center): 15:04:10 UTC
Sunset (upper limb): 15:06:07 UTC

Moon

This library uses the VSOP87 theory to calculate precise planetary positions. Each calculation uses terms with a heavy file size of several kilobytes. For that reason all VSOP87 calculations will load asynchronous and only when they are used. All coordinate methods do return a Promise.

Position of the Moon

Example 1: Calculate the geocentric position of the Moon for 12 April 1992 at 00:00 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createMoon} from 'astronomy-bundle/moon';

const toi = createTimeOfInterest.fromTime(1992, 4, 12, 0, 0, 0);
const moon = createMoon(toi);

const {x, y, z} = await moon.getGeocentricEclipticRectangularDateCoordinates();
const {lon, lat, radiusVector} = await moon.getGeocentricEclipticSphericalDateCoordinates();
const {rightAscension, declination, radiusVector} = await moon.getGeocentricEquatorialSphericalDateCoordinates();

The result of the calculation should be:

x: -0.001682
y: -0.001701
z: 0.000586

Longitude: 133.17°
Latitude: -3.23°
Radius Vector: 0.002463

Right Ascension: 134.69°
Declination: 13.77°
Radius Vector: 0.002463

Distance to earth and diameter

Example 1: Calculate the distance of the Moon in kilometers for the current time

import {createMoon} from 'astronomy-bundle/moon';

const moon = createMoon();

const distance = await moon.getDistanceToEarth();
const delta = await moon.getAngularDiameter();

The result should be between 363300 km and 405500 km.
The angular diameter is about 32'

Example 2: Get the distance of the Moon for 05 June 2017 at 20:30 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createMoon} from 'astronomy-bundle/moon';

const toi = createTimeOfInterest.fromTime(2017, 6, 5, 20, 30, 0);
const moon = createMoon(toi);

const distance = await moon.getDistanceToEarth();

The result should be: 402937.61 km

Moonrise, Moonset and Transit

The used standard altitude for moonset and moonrise is 0.125 which considers the effect of atmospheric refraction.

Example: Get the rise, set and transit of the Moon on 20. November 2020 in Berlin, Germany

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createMoon} from 'astronomy-bundle/moon';

const location = {
    lat: 52.519,
    lon: 13.408,
};

const toi = createTimeOfInterest.fromTime(2020, 11, 20, 0, 0, 0);
const moon = createMoon(toi);

const toiRise = await moon.getRise(location);
const toiTransit = await moon.getTransit(location);
const toiSet = await moon.getSet(location);

The result should be:

Moonrise: 12:02:52 UTC
Transit: 16:03:43 UTC
Moonset: 20:11:42 UTC

Phases of the Moon

Example 1: Get the illuminated fraction of the Moon for 12 April 1992 at 00:00 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createMoon} from 'astronomy-bundle/moon';

const toi = createTimeOfInterest.fromTime(1992, 4, 12, 0, 0, 0);
const moon = createMoon(toi);

const k = await moon.getIlluminatedFraction();
const isWaxing = await moon.isWaxing();

The result of the calculation should be:
Illumination: 0.679 (67.9%)
Is waxing: true

Example 2: Get upcoming first quarter and next full moon in November 2020

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createMoon} from 'astronomy-bundle/moon';

const toi = createTimeOfInterest.fromTime(2020, 11, 1, 0, 0, 0);
const moon = createMoon(toi);

const toiUpcomingFirstQuarter = moon.getUpcomingFirstQuarter();
const toiUpcomingFullMoon = moon.getUpcomingFullMoon();

The result of the calculation should be:
Upcoming first quarter: 2020-11-22 04:46:35 UTC
Upcoming full moon: 2020-11-30 09:31:22 UTC

Apparent magnitude of the Moon

Example: Get the apparent Magnitude of the Moon for 07 November 2020 at 01:20 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createMoon} from 'astronomy-bundle/moon';

const toi = createTimeOfInterest.fromTime(2020, 11, 7, 1, 20, 0);
const moon = createMoon(toi);

const V = await moon.getApparentMagnitude();

The result of the calculation should be: -10.71m

Physical Observation of the Moon

Example 1: Get the geocentric Physical Observation of the Moon for 07 November 2020 at 01:20 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createMoon} from 'astronomy-bundle/moon';

const toi = createTimeOfInterest.fromTime(2020, 11, 7, 1, 20, 0);
const moon = createMoon(toi);

const phi = await moon.getElongation();
const i = await moon.getPhaseAngle();
const chi = await moon.getPositionAngleOfBrightLimb();

The result of the calculation should be:
Elongation from Sun: 108.26°
Phase Angle: 71.6°
Position Angle of bright Limb: 100.29°

Example 2: Get the topocentric Physical Observation of the Moon for 07 November 2020 at 01:20 UTC for Berlin, Germany

import {createLocation} from 'astronomy-bundle/earth';
import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createMoon} from 'astronomy-bundle/moon';

const location = createLocation(52.52, 13.41, 30);

const toi = createTimeOfInterest.fromTime(2020, 11, 7, 1, 20, 0);
const moon = createMoon(toi);

const phi = await moon.getTopocentricElongation(location);
const i = await moon.getTopocentricPhaseAngle(location);
const chi = await moon.getTopocentricPositionAngleOfBrightLimb(location);

The result of the calculation should be:
Elongation from Sun: 107.81°
Phase Angle: 72.05°
Position Angle of bright Limb: 100.58°

Libration of the moon

The libration is the wagging or wavering of the Moon perceived by Earth-bound observers.

Example 1: Get the libration (selenographic position of the earth on the moons surface) on 12th of April 1992 (See Meeus Example 53.a)

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createMoon} from 'astronomy-bundle/moon';

const toi = createTimeOfInterest.fromTime(1992, 4, 12, 0, 0, 0);
const moon = createMoon(toi);

const {lon, lat} = await moon.getGeocentricLibration();
const {lon, lat} = await moon.getSelenographicLocationOfEarth(); // same as getGeocentricLibration()

The result of the calculation should be:
Longitude: -1.23121°
Latitude: 4.1998°

Example 2: Get the selenographic position of the sun on the moons surface on 12th of April 1992 (See Meeus Example 53.b)

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createMoon} from 'astronomy-bundle/moon';

const toi = createTimeOfInterest.fromTime(1992, 4, 12, 0, 0, 0);
const moon = createMoon(toi);

const {lon, lat} = await moon.getSelenographicLocationOfSun();

The result of the calculation should be:
Longitude: 67.89894°
Latitude: 1.4615°

Golden Handle, Lunar X and V

The Golden Handle occurs about 4 days before the Full Moon. The Jura Mountains catch the sunlight while Sinus Iridum below remains in shadow.

Example 1: Get the time of the Golden Handle for April 2022.

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createMoon} from 'astronomy-bundle/moon';

const toi = createTimeOfInterest.fromTime(2022, 4, 1, 0, 0, 0);
const moon = createMoon(toi);

const goldenHandle = moon.getGoldenHandle();

const toiStart = await goldenHandle.getStartTime();
const toiMax = await goldenHandle.getMaximum();
const toiEnd = await goldenHandle.getEndTime();

The result of the calculation should be:
Start of visibility: 2022-04-11 18:19:36 UT
Maximum visibility: 2022-04-11 21:19:36 UT
End of visibility: 2022-04-12 03:19:36 UT

The Lunar X is a clair-obscur effect in which light and shadow creates the appearance of a letter 'X' on the rim of the Blanchinus, La Caille and Purbach craters.

Example 2: Get the time of the Lunar X for April 2022.

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createMoon} from 'astronomy-bundle/moon';

const toi = createTimeOfInterest.fromTime(2022, 4, 1, 0, 0, 0);
const moon = createMoon(toi);

const lunarX = moon.getLunarX();

const toiStart = await lunarX.getStartTime();
const toiMax = await lunarX.getMaximum();
const toiEnd = await lunarX.getEndTime();

The result of the calculation should be:
Start of visibility: 2022-04-08 20:02:32 UT
Maximum visibility: 2022-04-08 21:32:32 UT
End of visibility: 2022-04-08 23:02:32 UT

The Lunar V is another effect such as the Lunar X. The Lunar V is longer visible than the Lunar X and can be seen even 10 hour after it reached his highest contrast.

Example 3: Get the time of the Lunar V for April 2022.

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createMoon} from 'astronomy-bundle/moon';

const toi = createTimeOfInterest.fromTime(2022, 4, 1, 0, 0, 0);
const moon = createMoon(toi);

const lunarV = moon.getLunarV();

const toiStart = await lunarV.getStartTime();
const toiMax = await lunarV.getMaximum();
const toiEnd = await lunarV.getEndTime();

The result of the calculation should be:
Start of visibility: 2022-04-08 19:09:03 UT
Maximum visibility: 2022-04-08 22:09:03 UT
End of visibility: 2022-04-09 06:09:03 UT

Planets

This library uses the VSOP87 theory to calculate precise planetary positions. Each calculation uses terms with a heavy file size of several kilobytes. For that reason all VSOP87 calculations will load asynchronous and only when they are used. All coordinate methods do return a Promise.

Position of Planets

Example 1: Calculate the heliocentric position for equinox J2000 of Venus for 04 November 2020 at 00:00 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createVenus} from 'astronomy-bundle/planets';

const toi = createTimeOfInterest.fromTime(2020, 11, 4, 0, 0, 0);
const venus = createVenus(toi);

const coordsRec = await venus.getHeliocentricEclipticRectangularJ2000Coordinates();
const coordsSph = await venus.getHeliocentricEclipticSphericalJ2000Coordinates();

The result of the calculation should be:

Heliocentric Rectangular (J2000)
x: -0.53523555
y: 0.477793213
z: 0.037443275

Heliocentric Spherical (J2000)
Longitude: 138° 14' 43.437"
Latitude: 2° 59' 14.774"
Radius Vector: 0.71844655

Example 2: Calculate the geocentric position for current date of Jupiter for 04 November 2020 at 00:00 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createJupiter} from 'astronomy-bundle/planets';

const toi = createTimeOfInterest.fromTime(2020, 11, 4, 0, 0, 0);
const jupiter = createJupiter(toi);

const coordsRec = await jupiter.getGeocentricEclipticRectangularDateCoordinates();
const coordsSph = await jupiter.getGeocentricEclipticSphericalDateCoordinates();

The result of the calculation should be:

Geocentric Rectangular
x: 4.1719826
y: 1.966573890
z: -0.101817535

Geocentric Spherical
Longitude: 25° 14' 17.091"
Latitude: -1° 15' 52.651"
Radius Vector: 4.613373871

Distance to Earth and diameter

Example: Get the distance and diameter of Venus for 02 October 2008 at 00:00 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createVenus} from 'astronomy-bundle/planets';

const toi = createTimeOfInterest.fromTime(2008, 10, 2, 0, 0, 0);
const venus = createVenus(toi);

const d = await venus.getDistanceToEarth();
const delta = await venus.getAngularDiameter();

The result of the calculation should be:
Distance to Earth: 206 930 461.4 km
Diameter: 0° 00' 12.065"

Phases of a Planet

Example: Get the illumination of the Mars for 20 Match 2019 at 02:55 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createMars} from 'astronomy-bundle/planets';

const toi = createTimeOfInterest.fromTime(2019, 3, 20, 2, 55, 0);
const mars = createMars(toi);

const k = await mars.getIlluminatedFraction();
const isWaxing = await mars.isWaxing();

The result of the calculation should be:
Illumination: 0.929 (92.9%)
Is waxing: true

Apparent magnitude of a Planet

Example: Get the apparent magnitude of Jupiter for 05 January 2012 at 00:00 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createJupiter} from 'astronomy-bundle/planets';

const toi = createTimeOfInterest.fromTime(2012, 1, 5, 0, 0, 0);
const jupiter = createJupiter(toi);

const V = await jupiter.getApparentMagnitude();

The result of the calculation should be: -2.52m

Physical Observation of Planets

Example: Get the geocentric Physical Observation of Venus for 30 July 2020 at 22:00 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createVenus} from 'astronomy-bundle/planets';

const toi = createTimeOfInterest.fromTime(2020, 7, 30, 22, 0, 0);
const venus = createVenus(toi);

const phi = await venus.getElongation();
const i = await venus.getPhaseAngle();
const chi = await venus.getPositionAngleOfBrightLimb();

The result of the calculation should be:
Elongation from Sun: 45.09°
Phase Angle: 98.85°
Position Angle of bright Limb: 83.08°

Conjunction of two Planets

Example 1: Check if there is a conjunction between Jupiter and Saturn on 04 June 2018

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createJupiter, Saturn} from 'astronomy-bundle/planets';

const toi = createTimeOfInterest.fromTime(2018, 6, 4, 0, 0, 0);
const jupiter = createJupiter(toi);

const {toi} = await jupiter.getConjunctionInRightAscensionTo(Saturn);

This code will throw an error: No conjunction possible for given objects at 2458273.5

Example 2: Check if there is a conjunction between Jupiter and Saturn on 21 December 2020

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createJupiter, Saturn} from 'astronomy-bundle/planets';

const toi = createTimeOfInterest.fromTime(2020, 12, 21, 0, 0, 0);
const jupiter = createJupiter(toi);

const {toi, position, angularDistance} = await jupiter.getConjunctionInRightAscensionTo(Saturn);

Result of the calculation:
There is a conjunction on 21 December 2020 at 13:24 UTC
And Jupiter is 06' 15.164" north of Saturn

Stars

Position of Stars

Example 1: Given are the equatorial coordinates of epoch J2000.
Right Ascension: 2h 44m 11.986s
Declination: 49° 13' 42.48"
Proper motion in Right Ascension: 0.03425"
Proper motion in Declination: -0.0895"
Calculate the apparent position for 04 November 2028 at 00:00 UTC

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createStar} from 'astronomy-bundle/stars';

const toi = createTimeOfInterest.fromTime(2028, 11, 13, 0, 0, 0);

const coordsJ2000 = {
    rightAscension: 41.04994167,
    declination: 49.22846667,
    radiusVector: 1,
};

const properMotion = {
    rightAscension: 0.0001427083,
    declination: -0.000024861,
};

const star = createStar.byEquatorialCoordinates(coordsJ2000, toi, properMotion);

const coords = await star.getApparentGeocentricEquatorialSphericalCoordinates();

The result of the calculation should be:

Right Ascension: 2h 46m 14.548s
Declination: 49° 21' 05.617"

Example 2: You may pass the epoch in Julian Days to the constructor, in case the coordinates of a star are given for another epoch than J2000.

import {createTimeOfInterest, EPOCH_J1950} from 'astronomy-bundle/time';
import {createStar} from 'astronomy-bundle/stars';

const toi = createTimeOfInterest.fromTime(2028, 11, 13, 0, 0, 0);

const coordsJ1950 = {
    rightAscension: 41.04994167,
    declination: 49.22846667,
    radiusVector: 1,
};

const properMotion = {
    rightAscension: 0.0001427083,
    declination: -0.000024861,
};

const star = createStar.byEquatorialCoordinates(coordsJ1950, toi, properMotion, EPOCH_J1950);

Solar Eclipse

You can create a new Solar Eclipse object by using Besselian Elements or a given date using the TimeOfInterest object. This bundle contains all Besselian Elements from the year 1500 to 2500. To reduce the bundle size the createSolarEclipse.fromTimeOfInterest() function will load the Besselian Elements asynchronous.

Example 1: Create the Solar Eclipse for 14 December 2020 using the TimeOfInterest object

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createSolarEclipse} from 'astronomy-bundle/solarEclipse';

const toi = createTimeOfInterest.fromTime(2020, 12, 14, 0, 0, 0);

const solarEclipse = await createSolarEclipse.fromTimeOfInterest(toi);

Example 2: Create the Solar Eclipse for 14 December 2020 using the Besselian Elements
Data source: https://eclipse.gsfc.nasa.gov/SEsearch/SEdata.php?Ecl=20201214

import {createSolarEclipse} from 'astronomy-bundle/solarEclipse';

const besselianElements = {
   tMax: 2459198.177,
   t0: 16,
   dT: 72.1,
   x: [-0.181824, 0.5633567, 0.0000216, -0.000009],
   y: [-0.269645, -0.0858122, 0.0001884, 0.0000015],
   d: [-23.2577591, -0.001986, 0.000006, 0],
   l1: [0.543862, 0.000097, -0.0000126, 0],
   l2: [-0.002265, 0.0000965, -0.0000125, 0],
   mu: [61.265911, 14.9965, 0, 0],
   tanF1: 0.0047502,
   tanF2: 0.0047266,
   latGreatestEclipse: -40.3,
   lonGreatestEclipse: -67.9,
};

const solarEclipse = createSolarEclipse.fromBesselianElements(besselianElements);

Check if solar eclipse exists

Example 1: Check if there is a Solar Eclipse on 15 January 2019

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {solarEclipseExists} from 'astronomy-bundle/solarEclipse';

const toi = createTimeOfInterest.fromTime(2019, 1, 15, 0, 0, 0);
const exists = solarEclipseExists(toi);

Result of the calculation: There is no solar eclipse

Example 2: Check if there is a Solar Eclipse on 21 August 2017

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {solarEclipseExists} from 'astronomy-bundle/solarEclipse';

const toi = createTimeOfInterest.fromTime(2017, 8, 21, 0, 0, 0);
const exists = solarEclipseExists(toi);

Result of the calculation: Yes, there is a solar eclipse

Greatest Eclipse

Example: Get the location of the greatest eclipse for the total solar eclipse on 14 December 2020

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createSolarEclipse} from 'astronomy-bundle/solarEclipse';

const toi = createTimeOfInterest.fromTime(2020, 12, 14, 0, 0, 0);
const solarEclipse = await createSolarEclipse.fromTimeOfInterest(toi);

const location = solarEclipse.getLocationOfGreatestEclipse();

Result of the calculation:
Lat: -40.3°
Lon: -67.9°

Observational Solar Eclipse Circumstances

Observational circumstances are circumstances which are dependent on the location of the observer and the exact time. Some events during an eclipse are special:

  • C1: First contact of the moon and the sun. Beginning of the solar eclipse
  • C2: Beginning of totality or annularity (Only during total or annular eclipse)
  • Max: Maximum obscuration of the sun
  • C3: End of totality or annularity (Only during total or annular eclipse)
  • C4: Last contact of the moon and the sun. End of the solar eclipse

Hint for examples: All examples below are using the following data:
Eclipse date: 14 December 2020
Location of the observer: -40.04842°, -70.07593° (Piedra del Águila, Argentina, elevation: 500 meters)

Example 1: Get the observational circumstances for all contacts and the maximum eclipse.

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createSolarEclipse} from 'astronomy-bundle/solarEclipse';
import {createLocation} from 'astronomy-bundle/earth';

const toi = createTimeOfInterest.fromTime(2020, 12, 14, 0, 0, 0);
const location = createLocation(-40.04842, -70.07593, 500);

const solarEclipse = await createSolarEclipse.fromTimeOfInterest(toi);

const localCircumstances = solarEclipse.getLocalCircumstances(location);

const obsCircumstancesC1 = localCircumstances.getObservationalCircumstancesForC1();
const obsCircumstancesC2 = localCircumstances.getObservationalCircumstancesForC2();
const obsCircumstancesMax = localCircumstances.getObservationalCircumstancesForMaxEclipse();
const obsCircumstancesC3 = localCircumstances.getObservationalCircumstancesForC3();
const obsCircumstancesC4 = localCircumstances.getObservationalCircumstancesForC4();

Example 2: Get the eclipse type, magnitude, moon-sun ratio and obscuration of the maximum eclipse for the given location.

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createSolarEclipse} from 'astronomy-bundle/solarEclipse';
import {createLocation} from 'astronomy-bundle/earth';

const toi = createTimeOfInterest.fromTime(2020, 12, 14, 0, 0, 0);
const location = createLocation(-40.04842, -70.07593, 500);

const solarEclipse = await createSolarEclipse.fromTimeOfInterest(toi);

const obsCircumstances = solarEclipse
        .getLocalCircumstances(location)
        .getObservationalCircumstancesForMaxEclipse();

const eclipseType = obsCircumstances.getEclipseType();
const magnitude = obsCircumstances.getMagnitude();
const moonSunRatio = obsCircumstances.getMoonSunRatio();
const obscuration = obsCircumstances.getObscuration();

Result of the calculation:
Eclipse type: 3 (0 = none, 1 = partial, 2 = annular, 3 = total)
Magnitude: 1.00633
Moon-Sun ratio: 1.02535
Obscuration: 100%

In other words: The observer will see a total solar eclipse where to moon covers the sun 100%.

Example 3: Get the eclipse type, magnitude, moon-sun ratio and obscuration of the maximum eclipse for an observer outside of the path of totality. Location: -37.47010, -72.36141

import {createTimeOfInterest} from 'astronomy-bundle/time';
import {createSolarEclipse} from 'astronomy-bundle/solarEclipse';
import {createLocation} from 'astronomy-bundle/earth';

const toi = createTimeOfInterest.fromTime(2020, 12, 14, 0, 0, 0);
const location = createLocation(-37.47010, -72.36141, 135);

const solarEclipse = await createSolarEclipse.fromTimeOfInterest(toi);

const obsCircumstances = solarEclipse
        .getLocalCircumstances(location)
        .getObservationalCircumstancesForMaxEclipse();

const eclipseType = obsCircumstances.getEclipseType();
const magnitude = obsCircumstances.getMagnitude();
const moonSunRatio = obsCircumstances.getMoonSunRatio();
const obscuration = obsCircumstances.getObscuration();

Result of the calculation:
Eclipse type: 1 (0 = none, 1 = partial, 2 = annular, 3 = total)
Magnitude: 0.96144
Moon-Sun ratio: 1.02547
Obscuration: 95.76%

In other words: The observer will see a partial solar eclipse with a maximum obscuration of 95.8%.

Satellites

Two Line Elements

Example: Parse Two Line Elements for the ISS

import {parseTwoLineElement} from 'astronomy-bundle/satellites';

const tleString = `
        ISS(ZARYA)
        1 25544U 98067A   06040.85138889  .00012260  00000-0  86027-4 0  3194
        2 25544  51.6448 122.3522 0008835 257.3473 251.7436 15.74622749413094
    `;

const tle = parseTwoLineElement(tleString);

About

This library provides tools and methods for astronomical calculations. With this bundle it is possible to calculate the position of moon, sun and planets and several coordinate systems. For a higher accuracy, several corrections, like nutation and precision, were taken into account. It is also possible to calculate rise, set and culmination even…

Resources

Stars

Watchers

Forks

Packages

No packages published