-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
97 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
import os | ||
os.environ['CUDA_VISIBLE_DEVICES'] = '0' | ||
import torch | ||
import numpy as np | ||
import os.path as op | ||
import torch.nn.functional as F | ||
from datasets import build_dataloader | ||
from utils.checkpoint import Checkpointer | ||
from model import build_model | ||
from utils.metrics import Evaluator | ||
from utils.iotools import load_train_configs | ||
import random | ||
import matplotlib.pyplot as plt | ||
from PIL import Image | ||
from datasets.cuhkpedes import CUHKPEDES | ||
|
||
|
||
config_file = '/xxx/configs.yaml' | ||
args = load_train_configs(config_file) | ||
args.batch_size = 1024 | ||
args.training = False | ||
device = "cuda" | ||
test_img_loader, test_txt_loader = build_dataloader(args) | ||
model = build_model(args) | ||
checkpointer = Checkpointer(model) | ||
checkpointer.load(f=op.join(args.output_dir, 'best.pth')) | ||
model.to(device) | ||
|
||
evaluator = Evaluator(test_img_loader, test_txt_loader) | ||
|
||
qfeats, gfeats, qids, gids = evaluator._compute_embedding(model.eval()) | ||
qfeats = F.normalize(qfeats, p=2, dim=1) # text features | ||
gfeats = F.normalize(gfeats, p=2, dim=1) # image features | ||
|
||
similarity = qfeats @ gfeats.t() | ||
# acclerate sort with topk | ||
_, indices = torch.topk(similarity, k=10, dim=1, largest=True, sorted=True) # q * topk | ||
|
||
dataset = CUHKPEDES(root='./data') | ||
test_dataset = dataset.test | ||
|
||
img_paths = test_dataset['img_paths'] | ||
captions = test_dataset['captions'] | ||
gt_img_paths = test_dataset['gt_img_paths'] | ||
|
||
def get_one_query_caption_and_result_by_id(idx, indices, qids, gids, captions, img_paths, gt_img_paths): | ||
query_caption = captions[idx] | ||
query_id = qids[idx] | ||
image_paths = [img_paths[j] for j in indices[idx]] | ||
image_ids = gids[indices[idx]] | ||
gt_image_path = gt_img_paths[idx] | ||
return query_id, image_ids, query_caption, image_paths, gt_image_path | ||
|
||
def plot_retrieval_images(query_id, image_ids, query_caption, image_paths, gt_img_path, fname=None): | ||
print(query_id) | ||
print(image_ids) | ||
print(query_caption) | ||
fig = plt.figure() | ||
col = len(image_paths) | ||
|
||
# plot ground truth image | ||
plt.subplot(1, col+1, 1) | ||
img = Image.open(gt_img_path) | ||
img = img.resize((128, 256)) | ||
plt.imshow(img) | ||
plt.xticks([]) | ||
plt.yticks([]) | ||
|
||
for i in range(col): | ||
plt.subplot(1, col+1, i+2) | ||
img = Image.open(image_paths[i]) | ||
|
||
bwith = 2 # 边框宽度设置为2 | ||
ax = plt.gca() # 获取边框 | ||
if image_ids[i] == query_id: | ||
ax.spines['top'].set_color('lawngreen') | ||
ax.spines['right'].set_color('lawngreen') | ||
ax.spines['bottom'].set_color('lawngreen') | ||
ax.spines['left'].set_color('lawngreen') | ||
else: | ||
ax.spines['top'].set_color('red') | ||
ax.spines['right'].set_color('red') | ||
ax.spines['bottom'].set_color('red') | ||
ax.spines['left'].set_color('red') | ||
|
||
img = img.resize((128, 256)) | ||
plt.imshow(img) | ||
plt.xticks([]) | ||
plt.yticks([]) | ||
|
||
|
||
fig.show() | ||
if fname: | ||
plt.savefig(fname, dpi=300) | ||
# idx is the index of qids(A list of query ids, range from 0 - len(qids)) | ||
query_id, image_ids, query_caption, image_paths, gt_img_path = get_one_query_caption_and_result_by_id(0, indices, qids, gids, captions, img_paths, gt_img_paths) | ||
plot_retrieval_images(query_id, image_ids, query_caption, image_paths, gt_img_path) |