-
lab-1:
Basic classification Supervised learning basics Linear regression Validation Binary linear classification Gradient descent Stochastic gradient descent
-
lab-2:
Linear multi-classification problem Universal approximation theorem Backpropagation Autoencoders
-
lab-3:
Kaggle competition https://www.kaggle.com/c/ch-2017
-
lab-4:
Latent semantic analysis (LSA) Word2vec GloVe FastText
-
final-lab:
Tree for a working repo . ├── models │ ├── last-v-1.h5 │ ├── last-v-2.h5 │ ├── last-v-3.h5 │ ├── last-v-4.h5 │ └── last-v-5.h5 ├── data │ ├── context_data.npy | ├── qst_data.npy | ├── cont_features.npy │ ├── ans_beg.npy | ├── ans_end.npy | ├── qst_data.npy | ├── con_tag.npy | ├── ent_tag.npy │ ├── embedding.npy | ├── context_test.npy | ├── cont_features_test.npy | ├── con_test.npy | ├── ent_test.npy | ├── qst_test.npy | ├── embedding.npy | ├── test_begin.npy | ├── test_end.npy | ├── data.msgpack | └── meta.msgpack ├── predict.py ├── prepare.py ├── test.py └── train.py
Firstly, you have to install Spacy lib:
pip install -U spacy python -m spacy download en
Just run this in terminal or visit the website https://spacy.io/usage/
To train a model run a script named train.py
To test a model run a script names test.py
To predict something use predict.py, all instructions are included
All additional data for directory data (warning it contains large files) you can find on my google drive https://drive.google.com/open?id=1R5ANjuQv26QCczuANHKoYFbvzsp3xGGj
You have to move data from this archive into final_lab/data
-
Notifications
You must be signed in to change notification settings - Fork 0
anrodigina/squad_network
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published