Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added RNN (LSTM) example #25

Merged
merged 1 commit into from
Jul 22, 2018
Merged

Added RNN (LSTM) example #25

merged 1 commit into from
Jul 22, 2018

Conversation

anshuman23
Copy link
Owner

@anshuman23 anshuman23 commented Jul 22, 2018

This example is going to be incorporated into a more detailed blog post, but here is a brief idea:

  • The Recurrent Neural Network utilizes Long-Short-Term-Memory (LSTM) cells for holding the state for the data flowing in through the network
  • In this example, we utilize the LSTM network for sentiment analysis on movie reviews data in Tensorflex. The trained models are originally created as part of an online tutorial (source) and are present in a Github repository here.

To do sentiment analysis in Tensorflex however, we first need to do some preprocessing and prepare the graph model (.pb) as done multiple times before in other examples. For that, in the examples/rnn-lstm-example directory there are two scripts: freeze.py and create_input_data.py. Prior to explaining the working of these scripts you first need to download the original saved models as well as the datasets:

  • For the model, download from here and then store all the 4 model files in the examples/rnn-lstm-example/model folder
  • For the dataset, download from here. After decompressing, we do not need all the files, just the 2 numpy binaries wordsList.npy and wordVectors.npy. These will be used to encode our text data into UTF-8 encoding for feeding our RNN as input.

Now, for the Python two scripts: freeze.py and create_input_data.py:

  • freeze.py: This is used to create our pb model from the Python saved checkpoints. Here we will use the downloaded Python checkpoints' model to create the .pb graph. Just running python freeze.py after putting the model files in the correct directory will do the trick. In the same ./model/ folder, you will now see a file called frozen_model_lstm.pb. This is the file which we will load into Tensorflex. In case for some reason you want to skip this step and just get the loaded graph here is a Dropbox link
  • create_input_data.py: Even if we can load our model into Tensorflex, we also need some data to do inference on. For that, we will write our own example sentences and convert them (read encode) to a numeral (int32) format that can be used by the network as input. For that, you can inspect the code in the script to get an understanding of what is happening. Basically, the neural network takes in an input of a 24x250 int32 (matrix) tensor created from text which has been encoded as UTF-8. Again, running python create_input_data.py will give you two csv files (one indicating positive sentiment and the other a negative sentiment) which we will later load into Tensorflex. The two sentences converted are:
    - Negative sentiment sentence: That movie was terrible.
    - Positive sentiment sentence: That movie was the best one I have ever seen.

Both of these get converted to two files inputMatrixPositive.csv and inputMatrixNegative.csv (by create_input_data.py) which we load into Tensorflex next.

Inference in Tensorflex:
Now we do sentiment analysis in Tensorflex. A few things to note:

  • The input graph operation is named Placeholder_1
  • The output graph operation is named add and is the eventual result of a matrix multiplication. Of this obtained result we only need the first row
  • Here the input is going to be a integer valued matrix tensor of dimensions 24x250 representing our sentence/review
  • The output will have 2 columns, as there are 2 classes-- for positive and negative sentiment respectively. Since we will only be needing only the first row we will get our result in a 1x2 vector. If the value of the first column is higher than the second column, then the network indicates a positive sentiment otherwise a negative sentiment. All this can be observed in the original repository in a Jupyter notebook here:
iex(1)> {:ok, graph} = Tensorflex.read_graph "examples/rnn-lstm-example/model/frozen_model_lstm.pb"
{:ok,
 %Tensorflex.Graph{
   def: #Reference<0.713975820.1050542081.11558>,
   name: "examples/rnn-lstm-example/model/frozen_model_lstm.pb"
 }}

iex(2)> Tensorflex.get_graph_ops graph
["Placeholder_1", "embedding_lookup/params_0", "embedding_lookup",
 "transpose/perm", "transpose", "rnn/Shape", "rnn/strided_slice/stack",
 "rnn/strided_slice/stack_1", "rnn/strided_slice/stack_2", "rnn/strided_slice",
 "rnn/stack/1", "rnn/stack", "rnn/zeros/Const", "rnn/zeros", "rnn/stack_1/1",
 "rnn/stack_1", "rnn/zeros_1/Const", "rnn/zeros_1", "rnn/Shape_1",
 "rnn/strided_slice_2/stack", "rnn/strided_slice_2/stack_1",
 "rnn/strided_slice_2/stack_2", "rnn/strided_slice_2", "rnn/time",
 "rnn/TensorArray", "rnn/TensorArray_1", "rnn/TensorArrayUnstack/Shape",
 "rnn/TensorArrayUnstack/strided_slice/stack",
 "rnn/TensorArrayUnstack/strided_slice/stack_1",
 "rnn/TensorArrayUnstack/strided_slice/stack_2",
 "rnn/TensorArrayUnstack/strided_slice", "rnn/TensorArrayUnstack/range/start",
 "rnn/TensorArrayUnstack/range/delta", "rnn/TensorArrayUnstack/range",
 "rnn/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3",
 "rnn/while/Enter", "rnn/while/Enter_1", "rnn/while/Enter_2",
 "rnn/while/Enter_3", "rnn/while/Merge", "rnn/while/Merge_1",
 "rnn/while/Merge_2", "rnn/while/Merge_3", "rnn/while/Less/Enter",
 "rnn/while/Less", "rnn/while/LoopCond", "rnn/while/Switch",
 "rnn/while/Switch_1", "rnn/while/Switch_2", "rnn/while/Switch_3", ...]

First we will try for positive sentiment:

iex(3)> input_vals = Tensorflex.load_csv_as_matrix("examples/rnn-lstm-example/inputMatrixPositive.csv", header: :false)
%Tensorflex.Matrix{
  data: #Reference<0.713975820.1050542081.13138>,
  ncols: 250,
  nrows: 24
}

iex(4)> input_dims = Tensorflex.create_matrix(1,2,[[24,250]])
%Tensorflex.Matrix{
  data: #Reference<0.713975820.1050542081.13575>,
  ncols: 2,
  nrows: 1
}

iex(5)> {:ok, input_tensor} = Tensorflex.int32_tensor(input_vals, input_dims)
{:ok,
 %Tensorflex.Tensor{
   datatype: :tf_int32,
   tensor: #Reference<0.713975820.1050542081.14434>
 }}

iex(6)> output_dims = Tensorflex.create_matrix(1,2,[[24,2]])
%Tensorflex.Matrix{
  data: #Reference<0.713975820.1050542081.14870>,
  ncols: 2,
  nrows: 1
}

iex(7)> {:ok, output_tensor} = Tensorflex.float32_tensor_alloc(output_dims)
{:ok,
 %Tensorflex.Tensor{
   datatype: :tf_float,
   tensor: #Reference<0.713975820.1050542081.15363>
 }}

We only need the first row, the rest do not indicate anything:

iex(8)> [result_pos | _ ] = Tensorflex.run_session(graph, input_tensor,output_tensor, "Placeholder_1", "add")
[
  [4.483788013458252, -1.273943305015564],
  [-0.17151066660881042, -2.165886402130127],
  [0.9569928646087646, -1.131581425666809],
  [0.5669126510620117, -1.3842089176177979],
  [-1.4346938133239746, -4.0750861167907715],
  [0.4680981934070587, -1.3494354486465454],
  [1.068990707397461, -2.0195648670196533],
  [3.427264451980591, 0.48857203125953674],
  [0.6307879686355591, -2.069119691848755],
  [0.35061028599739075, -1.700657844543457],
  [3.7612719535827637, 2.421398878097534],
  [2.7635951042175293, -0.7214710116386414],
  [1.146680235862732, -0.8688814640045166],
  [0.8996094465255737, -1.0183486938476563],
  [0.23605018854141235, -1.893072247505188],
  [2.8790698051452637, -0.37355837225914],
  [-1.7325369119644165, -3.6470277309417725],
  [-1.687785029411316, -4.903762340545654],
  [3.6726789474487305, 0.14170047640800476],
  [0.982108473777771, -1.554244875907898],
  [2.248904228210449, 1.0617655515670776],
  [0.3663095533847809, -3.5266385078430176],
  [-1.009346604347229, -2.901120901107788],
  [3.0659966468811035, -1.7605335712432861]
]

iex(9)> result_pos
[4.483788013458252, -1.273943305015564]

Thus we can clearly see that the RNN predicts a positive sentiment. For a negative sentiment, next:

iex(10)> input_vals = Tensorflex.load_csv_as_matrix("examples/rnn-lstm-example/inputMatrixNegative.csv", header: :false)
%Tensorflex.Matrix{
  data: #Reference<0.713975820.1050542081.16780>,
  ncols: 250,
  nrows: 24
}

iex(11)> {:ok, input_tensor} = Tensorflex.int32_tensor(input_vals,input_dims)
{:ok,              
 %Tensorflex.Tensor{
   datatype: :tf_int32,
   tensor: #Reference<0.713975820.1050542081.16788>
 }}

iex(12)> [result_neg|_] = Tensorflex.run_session(graph, input_tensor,output_tensor, "Placeholder_1", "add")
[
  [0.7635725736618042, 10.895986557006836],
  [2.205151319503784, -0.6267685294151306],
  [3.5995595455169678, -0.1240251287817955],
  [-1.6063352823257446, -3.586883068084717],
  [1.9608432054519653, -3.084211826324463],
  [3.772461414337158, -0.19421455264091492],
  [3.9185996055603027, 0.4442034661769867],
  [3.010765552520752, -1.4757057428359985],
  [3.23650860786438, -0.008513949811458588],
  [2.263028144836426, -0.7358709573745728],
  [0.206748828291893, -2.1945853233337402],
  [2.913491725921631, 0.8632720708847046],
  [0.15935257077217102, -2.9757845401763916],
  [-0.7757357358932495, -2.360766649246216],
  [3.7359719276428223, -0.7668198347091675],
  [2.2896337509155273, -0.45704856514930725],
  [-1.5497230291366577, -4.42919921875],
  [-2.8478822708129883, -5.541027545928955],
  [1.894787073135376, -0.8441318273544312],
  [0.15720489621162415, -2.699129819869995],
  [-0.18114641308784485, -2.988100051879883],
  [3.342879056930542, 2.1714375019073486],
  [2.906526565551758, 0.18969044089317322],
  [0.8568912744522095, -1.7559258937835693]
]
iex(13)> result_neg
[0.7635725736618042, 10.895986557006836]

Thus we can clearly see that in this case the RNN indicates negative sentiment! Our model works :D

@anshuman23 anshuman23 merged commit 9dd757b into master Jul 22, 2018
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant