Skip to content

A Collection Of Word Lists For ESL

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

antdurrant/word.lists

Repository files navigation

word.lists

Lifecycle: experimental

The goal of word.lists is to provide easy access to a handful of word-frequency lists.

These lists come primarily from the researchers Charlie Browne, Brent Culligan and Joseph Phillips, and made publicly available at https://www.newgeneralservicelist.org/ and Tom Cobb, whose site https://www.lextutor.ca/ is immensely useful for vocabulary profiling.

Installation

You can install the released version of word.lists from... CRAN with:

# no, you can't
# install.packages("word.lists")

And the development version from GitHub with:

# install.packages("devtools")
# just this one for at least a while
devtools::install_github("antdurrant/word.lists")

We’ll see the distribution of words from the NGSL and NAWL in some arbitrary academic-ish text.

NAWL List Description

A dataset containing the New Academic Word List (NAWL) & New General Service List (NGSL). Difficulty groupings have been arbitrarily set by me, as follows: Group 1: first 500 words of NGSL by frequency & “supplementary” words - months/numbers etc Group 2: next 500 words of NGSL by frequency Group 3: next 1000 words of NGSL by frequency Group 4: remaining NGSL words by frequency (about 800 words) Group 5: academic word list (about 950 words)

library(word.lists)
library(udpipe)
library(dplyr)

What does a list look like?

list_academic %>%
  head() %>% 
  knitr::kable()
lemma group on_list
authority 5 academic
publish 5 academic
conference 5 academic
aspect 5 academic
client 5 academic
impact 5 academic

Any old text will do:

text <- "There are numerous indicators of success in any field of research. 
Though one may be valid in some context, it may be rendered without utility in another."

Annotate it with udpipe, keep only some useful bits

piped_text <- udpipe(text, object = "english") %>% 
  select(doc_id, sentence_id, token_id, token, lemma, upos) 

piped_text %>%
  head() %>%
  knitr::kable()
doc_id sentence_id token_id token lemma upos
doc1 1 1 There there PRON
doc1 1 2 are be VERB
doc1 1 3 numerous numerous ADJ
doc1 1 4 indicators indicator NOUN
doc1 1 5 of of ADP
doc1 1 6 success success NOUN

Show the words and where they are in the list

piped_text %>%
  left_join(list_academic) %>%
  head() %>% 
  knitr::kable()
#> Joining, by = "lemma"
doc_id sentence_id token_id token lemma upos group on_list
doc1 1 1 There there PRON 1 general
doc1 1 2 are be VERB 1 general
doc1 1 3 numerous numerous ADJ 4 general
doc1 1 4 indicators indicator NOUN 5 academic
doc1 1 5 of of ADP 1 general
doc1 1 6 success success NOUN 2 general

Order by most advanced words first

joined_text <- piped_text %>%
  left_join(list_academic) %>%
  filter(upos != "PUNCT") %>%
  arrange(desc(group)) 
#> Joining, by = "lemma"

joined_text %>%
  head() %>%
  knitr::kable()
doc_id sentence_id token_id token lemma upos group on_list
doc1 1 4 indicators indicator NOUN 5 academic
doc1 2 5 valid valid ADJ 5 academic
doc1 2 13 rendered render VERB 5 academic
doc1 2 15 utility utility NOUN 5 academic
doc1 1 3 numerous numerous ADJ 4 general
doc1 2 8 context context NOUN 3 general

How many in each group?

joined_text %>%
  count(on_list, group) %>%
  arrange(desc(group))%>%
  knitr::kable()
on_list group n
academic 5 4
general 4 1
general 3 1
general 2 2
general 1 19

We can see that this has a fairly high proportion of “academic” words with the majority falling under the most frequent thousand-word grouping, which is totally normal.

Auto-generate translated wordlists

If I am teaching Japanese-speaking kids:

I want to get a wordlist

piped_text %>%
  word.lists::get_wordlist(language = "jpn")%>%
  knitr::kable()
#> Joining, by = "upos"
token_id token lemma upos pos translation
1 There there PRON
2 are be VERB v である || ではある || ございます || ある
3 numerous numerous ADJ a ぎょうさん || おびただしい
4 indicators indicator NOUN n 指数 || 指標 || 兆候 || 前兆
5 of of ADP
6 success success NOUN n サクセス || 上首尾 || 成功 || ウイナー
7 in in ADP
8 any any DET
9 field field NOUN n 土地 || 小野 || 前線 || 征野
10 of of ADP
11 research research NOUN n リサーチ || 研究 || 問い合わせ
1 Though though SCONJ
2 one one NUM
3 may may AUX v
4 be be AUX v である || ではある || ございます || ある
5 valid valid ADJ a 妥当 || 有効
6 in in ADP
7 some some DET
8 context context NOUN n コンテキスト || 前後関係
10 it it PRON
11 may may AUX v
12 be be AUX v である || ではある || ございます || ある
13 rendered render VERB v 供給+する || 提供+する || 作る || 作り出す
14 without without ADP
15 utility utility NOUN n 公益法人 || 実用性 || 有益さ || 公共サービス
16 in in ADP
17 another another DET

Okay, but I know my students know the first thousand or so words

piped_text %>%
  word.lists::get_wordlist(language = "jpn") %>%
  left_join(list_academic) %>%
  filter(upos != "PUNCT",
         group > 2) %>%
  select(on_list, group, token, lemma, upos, translation) %>%
  knitr::kable()
#> Joining, by = "upos"
#> Joining, by = "lemma"
on_list group token lemma upos translation
general 4 numerous numerous ADJ ぎょうさん || おびただしい
academic 5 indicators indicator NOUN 指数 || 指標 || 兆候 || 前兆
academic 5 valid valid ADJ 妥当 || 有効
general 3 context context NOUN コンテキスト || 前後関係
academic 5 rendered render VERB 供給+する || 提供+する || 作る || 作り出す
academic 5 utility utility NOUN 公益法人 || 実用性 || 有益さ || 公共サービス

Or maybe I am teaching Finnish-speaking kids who just need academic words:

piped_text %>%
  word.lists::get_wordlist(language = "eus") %>%
  left_join(list_academic) %>%
  filter(upos != "PUNCT",
         group == 5) %>%
  select(on_list, group, token, lemma, upos, translation) %>%
  knitr::kable()
#> Joining, by = "upos"
#> Joining, by = "lemma"
on_list group token lemma upos translation
academic 5 indicators indicator NOUN zenbaki indize || adierazgailu || adierazle
academic 5 valid valid ADJ
academic 5 rendered render VERB bihurtu || bilakatu || eman || eragin
academic 5 utility utility NOUN zerbitzu publiko || baliagarritasun || erabilgarritasun || baliogarritasun

The translations only go English > OTHER. They all come from the Open Multilingual Wordnet, which itself is an international project using the fundamental work done by the Princeton wordnet. Where there is no entry in the Open Multilingual Wordnet, the translation will come out blank. It is not perfect, but it is a heck of a lot easier than going through texts one word at a time.

The translation work runs through Python’s nltk module.

word.lists::nltk_languages %>%
  knitr::kable()
wordnet lang synsets words senses core licence
Albanet als 4675 5988 9599 31% CC BY 3.0
Arabic WordNet (AWN v2) arb 9916 17785 37335 47% CC BY SA 3.0
BulTreeBank Wordnet (BTB-WN) bul 4959 6720 8936 99% CC BY 3.0
Chinese Open Wordnet cmn 42312 61533 79809 100% wordnet
Chinese Wordnet (Taiwan) qcn 4913 3206 8069 28% wordnet
DanNet dan 4476 4468 5859 81% wordnet
Greek Wordnet ell 18049 18227 24106 57% Apache 2.0
Princeton WordNet eng 117659 148730 206978 100% wordnet
Persian Wordnet fas 17759 17560 30461 41% Free to use
FinnWordNet fin 116763 129839 189227 100% CC BY 3.0
WOLF (Wordnet Libre du Français) fra 59091 55373 102671 92% CeCILL-C
Hebrew Wordnet heb 5448 5325 6872 27% wordnet
Croatian Wordnet hrv 23120 29008 47900 100% CC BY 3.0
IceWordNet isl 4951 11504 16004 99% CC BY 3.0
MultiWordNet ita 35001 41855 63133 83% CC BY 3.0
ItalWordnet ita 15563 19221 24135 48% ODC-BY 1.0
Japanese Wordnet jpn 57184 91964 158069 95% wordnet
Multilingual Central Repository cat 45826 46531 70622 81% CC BY 3.0
Multilingual Central Repository eus 29413 26240 48934 71% CC BY 3.0
Multilingual Central Repository glg 19312 23124 27138 36% CC BY 3.0
Multilingual Central Repository spa 38512 36681 57764 76% CC BY 3.0
Wordnet Bahasa ind 38085 36954 106688 94% MIT
Wordnet Bahasa zsm 36911 33932 105028 96% MIT
Open Dutch WordNet nld 30177 43077 60259 67% CC BY SA 4.0
Norwegian Wordnet nno 3671 3387 4762 66% wordnet
Norwegian Wordnet nob 4455 4186 5586 81% wordnet
plWordNet pol 33826 45387 52378 54% wordnet
OpenWN-PT por 43895 54071 74012 84% CC BY-SA
Romanian Wordnet ron 56026 49987 84638 94% CC BY SA
Lithuanian WordNet lit 9462 11395 16032 35% CC BY SA 3.0
Slovak WordNet slk 18507 29150 44029 58% CC BY SA 3.0
sloWNet slv 42583 40233 70947 86% CC BY SA 3.0
Swedish (SALDO) swe 6796 5824 6904 99% CC-BY 3.0
Thai Wordnet tha 73350 82504 95517 81% wordnet

TODO: Bring this functionality to an app

About

A Collection Of Word Lists For ESL

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages