Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

internal PR for HF model support #3

Closed
wants to merge 13 commits into from
Closed
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Unify attention mechanism in single and joint attention blocks
filipstrand committed Jan 14, 2025
commit 9954e7fb459c4aeaf1125174b117ea831edee678
Empty file.
59 changes: 59 additions & 0 deletions src/mflux/models/transformer/common/attention_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import mlx.core as mx
from mlx import nn
from mlx.core.fast import scaled_dot_product_attention


class AttentionUtils:
@staticmethod
def process_qkv(
hidden_states: mx.array,
to_q: nn.Linear,
to_k: nn.Linear,
to_v: nn.Linear,
norm_q: nn.RMSNorm,
norm_k: nn.RMSNorm,
num_heads: int,
head_dim: int,
):
query = to_q(hidden_states)
key = to_k(hidden_states)
value = to_v(hidden_states)

# Reshape and transpose
query = mx.transpose(mx.reshape(query, (1, -1, num_heads, head_dim)), (0, 2, 1, 3))
key = mx.transpose(mx.reshape(key, (1, -1, num_heads, head_dim)), (0, 2, 1, 3))
value = mx.transpose(mx.reshape(value, (1, -1, num_heads, head_dim)), (0, 2, 1, 3))

# Apply normalization
query = norm_q(query)
key = norm_k(key)

return query, key, value

@staticmethod
def compute_attention(
query: mx.array,
key: mx.array,
value: mx.array,
batch_size: int,
num_heads: int,
head_dim: int
) -> mx.array: # fmt: off
scale = 1 / mx.sqrt(query.shape[-1])
hidden_states = scaled_dot_product_attention(query, key, value, scale=scale)

hidden_states = mx.transpose(hidden_states, (0, 2, 1, 3))
hidden_states = mx.reshape(
hidden_states,
(batch_size, -1, num_heads * head_dim),
)

return hidden_states

@staticmethod
def apply_rope(xq: mx.array, xk: mx.array, freqs_cis: mx.array):
xq_ = xq.astype(mx.float32).reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.astype(mx.float32).reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).astype(mx.float32), xk_out.reshape(*xk.shape).astype(mx.float32)
88 changes: 36 additions & 52 deletions src/mflux/models/transformer/joint_attention.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,16 @@
import mlx.core as mx
from mlx import nn
from mlx.core.fast import scaled_dot_product_attention

from mflux.models.transformer.common.attention_utils import AttentionUtils

class JointAttention(nn.Module):
head_dimension = 128
batch_size = 1
num_heads = 24

class JointAttention(nn.Module):
def __init__(self):
super().__init__()
self.head_dimension = 128
self.batch_size = 1
self.num_heads = 24

self.to_q = nn.Linear(3072, 3072)
self.to_k = nn.Linear(3072, 3072)
self.to_v = nn.Linear(3072, 3072)
@@ -29,51 +30,42 @@ def __call__(
encoder_hidden_states: mx.array,
image_rotary_emb: mx.array,
) -> (mx.array, mx.array):
query = self.to_q(hidden_states)
key = self.to_k(hidden_states)
value = self.to_v(hidden_states)

query = mx.transpose(mx.reshape(query, (1, -1, 24, 128)), (0, 2, 1, 3))
key = mx.transpose(mx.reshape(key, (1, -1, 24, 128)), (0, 2, 1, 3))
value = mx.transpose(mx.reshape(value, (1, -1, 24, 128)), (0, 2, 1, 3))

query = self.norm_q(query)
key = self.norm_k(key)

encoder_hidden_states_query_proj = self.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states)

encoder_hidden_states_query_proj = mx.transpose(
mx.reshape(encoder_hidden_states_query_proj, (1, -1, 24, 128)),
(0, 2, 1, 3),
)
encoder_hidden_states_key_proj = mx.transpose(
mx.reshape(encoder_hidden_states_key_proj, (1, -1, 24, 128)),
(0, 2, 1, 3),
query, key, value = AttentionUtils.process_qkv(
hidden_states=hidden_states,
to_q=self.to_q,
to_k=self.to_k,
to_v=self.to_v,
norm_q=self.norm_q,
norm_k=self.norm_k,
num_heads=self.num_heads,
head_dim=self.head_dimension,
)
encoder_hidden_states_value_proj = mx.transpose(
mx.reshape(encoder_hidden_states_value_proj, (1, -1, 24, 128)),
(0, 2, 1, 3),
enc_query, enc_key, enc_value = AttentionUtils.process_qkv(
hidden_states=encoder_hidden_states,
to_q=self.add_q_proj,
to_k=self.add_k_proj,
to_v=self.add_v_proj,
norm_q=self.norm_added_q,
norm_k=self.norm_added_k,
num_heads=self.num_heads,
head_dim=self.head_dimension,
)

encoder_hidden_states_query_proj = self.norm_added_q(encoder_hidden_states_query_proj)
encoder_hidden_states_key_proj = self.norm_added_k(encoder_hidden_states_key_proj)

query = mx.concatenate([encoder_hidden_states_query_proj, query], axis=2)
key = mx.concatenate([encoder_hidden_states_key_proj, key], axis=2)
value = mx.concatenate([encoder_hidden_states_value_proj, value], axis=2)
query = mx.concatenate([enc_query, query], axis=2)
key = mx.concatenate([enc_key, key], axis=2)
value = mx.concatenate([enc_value, value], axis=2)

query, key = JointAttention.apply_rope(query, key, image_rotary_emb)
query, key = AttentionUtils.apply_rope(xq=query, xk=key, freqs_cis=image_rotary_emb)

scale = 1 / mx.sqrt(query.shape[-1])
hidden_states = scaled_dot_product_attention(query, key, value, scale=scale)

hidden_states = mx.transpose(hidden_states, (0, 2, 1, 3))
hidden_states = mx.reshape(
hidden_states,
(self.batch_size, -1, self.num_heads * self.head_dimension),
hidden_states = AttentionUtils.compute_attention(
query=query,
key=key,
value=value,
batch_size=self.batch_size,
num_heads=self.num_heads,
head_dim=self.head_dimension,
)

encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
@@ -83,11 +75,3 @@ def __call__(
encoder_hidden_states = self.to_add_out(encoder_hidden_states)

return hidden_states, encoder_hidden_states

@staticmethod
def apply_rope(xq: mx.array, xk: mx.array, freqs_cis: mx.array):
xq_ = xq.astype(mx.float32).reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.astype(mx.float32).reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).astype(mx.float32), xk_out.reshape(*xk.shape).astype(mx.float32)
59 changes: 25 additions & 34 deletions src/mflux/models/transformer/single_block_attention.py
Original file line number Diff line number Diff line change
@@ -1,50 +1,41 @@
import mlx.core as mx
from mlx import nn
from mlx.core.fast import scaled_dot_product_attention

from mflux.models.transformer.common.attention_utils import AttentionUtils

class SingleBlockAttention(nn.Module):
head_dimension = 128
batch_size = 1
num_heads = 24

class SingleBlockAttention(nn.Module):
def __init__(self):
super().__init__()
self.head_dimension = 128
self.batch_size = 1
self.num_heads = 24

self.to_q = nn.Linear(3072, 3072)
self.to_k = nn.Linear(3072, 3072)
self.to_v = nn.Linear(3072, 3072)
self.norm_q = nn.RMSNorm(128)
self.norm_k = nn.RMSNorm(128)

def __call__(self, hidden_states: mx.array, image_rotary_emb: mx.array) -> (mx.array, mx.array):
query = self.to_q(hidden_states)
key = self.to_k(hidden_states)
value = self.to_v(hidden_states)

query = mx.transpose(mx.reshape(query, (1, -1, 24, 128)), (0, 2, 1, 3))
key = mx.transpose(mx.reshape(key, (1, -1, 24, 128)), (0, 2, 1, 3))
value = mx.transpose(mx.reshape(value, (1, -1, 24, 128)), (0, 2, 1, 3))

query = self.norm_q(query)
key = self.norm_k(key)

query, key = SingleBlockAttention.apply_rope(query, key, image_rotary_emb)

scale = 1 / mx.sqrt(query.shape[-1])
hidden_states = scaled_dot_product_attention(query, key, value, scale=scale)

hidden_states = mx.transpose(hidden_states, (0, 2, 1, 3))
hidden_states = mx.reshape(
hidden_states,
(self.batch_size, -1, self.num_heads * self.head_dimension),
def __call__(self, hidden_states: mx.array, image_rotary_emb: mx.array) -> mx.array:
query, key, value = AttentionUtils.process_qkv(
hidden_states=hidden_states,
to_q=self.to_q,
to_k=self.to_k,
to_v=self.to_v,
norm_q=self.norm_q,
norm_k=self.norm_k,
num_heads=self.num_heads,
head_dim=self.head_dimension,
)

return hidden_states
query, key = AttentionUtils.apply_rope(xq=query, xk=key, freqs_cis=image_rotary_emb)

@staticmethod
def apply_rope(xq: mx.array, xk: mx.array, freqs_cis: mx.array):
xq_ = xq.astype(mx.float32).reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.astype(mx.float32).reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).astype(mx.float32), xk_out.reshape(*xk.shape).astype(mx.float32)
return AttentionUtils.compute_attention(
query=query,
key=key,
value=value,
batch_size=self.batch_size,
num_heads=self.num_heads,
head_dim=self.head_dimension,
)