PC-SOS-SDP is an exact algorithm based on the branch-and-bound technique for solving the semi-supervised Minimum Sum-of-Squares Clustering (MSSC) problem with pairwise constraints (i.e. must-link and cannot-link constraints) described in the paper "An exact algorithm for semi-supervised minimum sum-of-squares clustering". This repository contains the C++ source code, the MATLAB scripts, and the datasets used for the experiments.
V. Piccialli, A. Russo Russo, A. M. Sudoso (2022). An exact algorithm for semi-supervised minimum sum-of-squares clustering. Computers & Operations Research, https://doi.org/10.1016/j.cor.2022.105958.
PC-SOS-SDP calls the semidefinite programming solver SDPNAL+ by using the MATLAB Engine API for C++. It requires the MATLAB engine library libMatlabEngine and the Matlab Data Array library libMatlabDataArray. PC-SOS-SDP calls the integer programming solver Gurobi. PC-SOS-SDP uses the Armadillo library to handle matrices and linear algebra operations efficiently. Before installing Armadillo, first install OpenBLAS and LAPACK along with the corresponding development files. PC-SOS-SDP implements a configurable thread pool of POSIX threads to speed up the branch-and-bound search.
Ubuntu and Debian instructions:
- Install MATLAB (>= 2016b)
- Install Gurobi (>= 9.0)
- Install CMake, OpenBLAS, LAPACK and Armadillo:
sudo apt-get update
sudo apt-get install cmake libopenblas-dev liblapack-dev libarmadillo-dev
- Open the makefile
clustering_c++/Makefile
- Set the variable
matlab_path
with your MATLAB folder. - Set the variable
gurobi_path
with your Gurobi folder.
- Set the variable
- Compile the code:
cd clustering_c++/
make
- Download SDPNAL+, move the folder
clustering_matlab
containing the MATLAB source code of PC-SOS-SDP in the SDPNAL+ main directory and set the parameterSDP_SOLVER_FOLDER
of the configuration file accordingly. This folder and its subfolders will be automatically added to the MATLAB search path when PC-SOS-SDP starts.
The code has been tested on Ubuntu Server 20.04 with MATLAB R2020b, Gurobi 9.2 and Armadillo 10.2.
Various parameters used in PC-SOS-SDP can be modified in the configuration file clustering_c++/config.txt
:
BRANCH_AND_BOUND_TOL
- optimality tolerance of the branch-and-boundBRANCH_AND_BOUND_PARALLEL
- thread pool size: single thread (1), multi-thread (> 1)BRANCH_AND_BOUND_MAX_NODES
- maximum number of nodesBRANCH_AND_BOUND_VISITING_STRATEGY
- best first (0), depth first (1), breadth first (2)SDP_SOLVER_SESSION_THREADS_ROOT
- number of threads for the MATLAB session at the rootSDP_SOLVER_SESSION_THREADS
- number of threads for the MATLAB session for the ML and CL nodesSDP_SOLVER_FOLDER
- full path of the SDPNAL+ folderSDP_SOLVER_TOL
- accuracy of SDPNAL+SDP_SOLVER_VERBOSE
- do not display log (0), display log (1)SDP_SOLVER_MAX_CP_ITER_ROOT
- maximum number of cutting-plane iterations at the rootSDP_SOLVER_MAX_CP_ITER
- maximum number of cutting-plane iterations for the ML and CL nodesSDP_SOLVER_CP_TOL
- cutting-plane tolerance between two consecutive cutting-plane iterationsSDP_SOLVER_MAX_INEQ
- maximum number of valid inequalities to addSDP_SOLVER_INHERIT_PERC
- fraction of inequalities to inheritSDP_SOLVER_EPS_INEQ
- tolerance for checking the violation of the inequalitiesSDP_SOLVER_EPS_ACTIVE
- tolerance for detecting the active inequalitiesSDP_SOLVER_MAX_PAIR_INEQ
- maximum number of pair inequalities to separateSDP_SOLVER_PAIR_PERC
- fraction of the most violated pair inequalities to addSDP_SOLVER_MAX_TRIANGLE_INEQ
- maximum number of triangle inequalities to separateSDP_SOLVER_TRIANGLE_PERC
- fraction of the most violated triangle inequalities to add
cd clustering_c++/
./bb <DATASET> <K> <CONSTRAINTS> <LOG> <RESULT>
DATASET
- path of the datasetK
- number of clustersCONSTRAINTS
- path of the constraintsLOG
- path of the log fileRESULT
- path of the optimal cluster assignment matrix
File DATASET
contains the data points x_ij
and the must include an header line with the problem size n
and the dimension d
:
n d
x_11 x_12 ... x_1d
x_21 x_22 ... x_2d
...
...
x_n1 x_n2 ... x_nd
File CONSTRAINTS
should include indices (i, j)
of the data points involved in must-link (ML) and/or cannot-link (CL) constraints:
CL i1 j1
CL i2 j2
...
...
ML i3 j3
ML i4 j4
If it does not contain any constraint (empty file), PC-SOS-SDP becomes SOS-SDP (the exact solver for unsupervised MSSC).
The log file reports the progress of the algorithm:
N
- size of the current nodeNODE_PAR
- id of the parent nodeNODE
- id of the current nodeLB_PAR
- lower bound of the parent nodeLB
- lower bound of the current nodeFLAG
- termination flag of SDPNAL+0
- SDP is solved to the required accuracy1
- SDP is not solved successfully-1, -2, -3
- SDP is partially solved successfully
TIME (s)
- running time in seconds of the current nodeCP_ITER
- number of cutting-plane iterationsCP_FLAG
- termination flag of the cutting-plane procedure-3
- current bound is worse than the previous one-2
- SDP is not solved successfully-1
- maximum number of iterations0
- no violated inequalities1
- maximum number of inequalities2
- node must be pruned3
- cutting-plane tolerance
CP_INEQ
- number of inequalities added in the last cutting-plane iterationPAIR TRIANGLE CLIQUE
- average number of added cuts for each class of inequalitiesUB
- current upper boundGUB
- global upper boundI J
- current branching decisionNODE_GAP
- gap at the current nodeGAP
- overall gapOPEN
- number of open nodes
Log file example:
DATA_PATH, n, d, k: /home/ubuntu/PC-SOS-SDP/instances/glass.txt 214 9 6
CONSTRAINTS_PATH: /home/ubuntu/PC-SOS-SDP/instances/constraints/glass/ml_50_cl_50_3.txt
LOG_PATH: /home/ubuntu/PC-SOS_SDP/logs/glass/log_ml_50_cl_50_3.txt
BRANCH_AND_BOUND_TOL: 1e-4
BRANCH_AND_BOUND_PARALLEL: 16
BRANCH_AND_BOUND_MAX_NODES: 200
BRANCH_AND_BOUND_VISITING_STRATEGY: 0
SDP_SOLVER_SESSION_THREADS_ROOT: 16
SDP_SOLVER_SESSION_THREADS: 1
SDP_SOLVER_FOLDER: /home/ubuntu/PC-SOS-SDP/SDPNAL+/
SDP_SOLVER_TOL: 1e-05
SDP_SOLVER_VERBOSE: 0
SDP_SOLVER_MAX_CP_ITER_ROOT: 80
SDP_SOLVER_MAX_CP_ITER: 40
SDP_SOLVER_CP_TOL: 1e-06
SDP_SOLVER_MAX_INEQ: 100000
SDP_SOLVER_INHERIT_PERC: 1
SDP_SOLVER_EPS_INEQ: 0.0001
SDP_SOLVER_EPS_ACTIVE: 1e-06
SDP_SOLVER_MAX_PAIR_INEQ: 100000
SDP_SOLVER_PAIR_PERC: 0.05
SDP_SOLVER_MAX_TRIANGLE_INEQ: 100000
SDP_SOLVER_TRIANGLE_PERC: 0.05
| N| NODE_PAR| NODE| LB_PAR| LB| FLAG| TIME (s)| CP_ITER| CP_FLAG| CP_INEQ| PAIR TRIANGLE CLIQUE| UB| GUB| I J| NODE_GAP| GAP| OPEN|
| 164| -1| 0| -inf| 93.3876| 0| 110| 7| -3| 6456| 242.571 4802 8.14286| 93.5225| 93.5225*| -1 -1| 0.00144229| 0.00144229| 0|
| 163| 0| 1| 93.3876| 93.4388| 0| 35| 2| -3| 5958| 1 3675 0| 93.4777| 93.4777*| 79 142| 0.000416211| 0.000416211| 0|
| 164| 0| 2| 93.3876| 93.4494| 0| 47| 2| -3| 6888| 0 4635 0| 93.5225| 93.4777| 79 142| 0.000302427| 0.000302427| 0|
| 162| 1| 3| 93.4388| 93.506| 0| 27| 1| 2| 6258| 9 3759 0| inf| 93.4777| 119 152| -0.000302724| -0.000302724| 0|
| 163| 1| 4| 93.4388| 93.4536| 0| 47| 4| -3| 3336| 0 1789 0| 93.4777| 93.4777| 119 152| 0.00025747| 0.00025747| 0|
| 164| 2| 5| 93.4494| 93.4549| 0| 37| 1| -3| 6888| 0 5000 0| 93.5225| 93.4777| 47 54| 0.000243844| 0.000243844| 0|
| 163| 2| 6| 93.4494| 93.4708| 0| 51| 2| 2| 7292| 11 4693 0| 93.5559| 93.4777| 47 54| 7.36443e-05| 7.36443e-05| 0|
| 164| 5| 7| 93.4549| 93.475| 0| 22| 0| 2| 6888| 0 0 0| 93.5225| 93.4777| 122 153| 2.82805e-05| 2.82805e-05| 0|
| 163| 4| 8| 93.4536| 93.4536| 0| 38| 2| -3| 3257| 0 668.5 0| 93.4704| 93.4704*| 47 54| 0.000180057| 0.000180057| 0|
| 163| 5| 9| 93.4549| 93.5216| 0| 41| 1| 2| 6893| 8 5000 0| inf| 93.4704| 122 153| -0.000547847| -0.000547847| 0|
| 163| 8| 10| 93.4536| 93.4536| 0| 27| 1| -3| 3257| 0 879 0| 93.4704| 93.4704| 37 45| 0.000180057| 0.000180057| 0|
| 162| 8| 11| 93.4536| 93.4838| 0| 33| 1| 2| 6158| 24 4233 0| inf| 93.4704| 37 45| -0.000143677| -0.000143677| 0|
| 162| 4| 12| 93.4536| 93.4658| 0| 75| 5| -3| 2793| 4.6 2379 0| 93.5111| 93.4704| 47 54| 4.89954e-05| 4.89954e-05| 0|
| 162| 10| 13| 93.4536| 93.5053| 0| 19| 0| 2| 3122| 0 0 0| inf| 93.4704| 37 99| -0.00037365| -0.00037365| 0|
| 163| 10| 14| 93.4536| 93.4701| 0| 31| 0| 2| 3257| 0 0 0| 93.4704| 93.4704| 37 99| 3.13989e-06| 3.13989e-06| 0|
WALL_TIME: 304 sec
N_NODES: 15
AVG_INEQ: 2788.05
AVG_CP_ITER: 1.93333
ROOT_GAP: 0.00144229
GAP: 0
BEST: 93.4704
V. Piccialli, A. M. Sudoso, A. Wiegele (2022). SOS-SDP: An Exact Solver for Minimum Sum-of-Squares Clustering, INFORMS Journal on Computing.
- Paper: https://doi.org/10.1287/ijoc.2022.1166
- Code: https://github.com/antoniosudoso/sos-sdp
V. Piccialli, A. M. Sudoso (2023). Global optimization for cardinality-constrained minimum sum-of-squares clustering via semidefinite programming, Mathematical Programming.