ValueError: bad marshal data (unknown type code) #72
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
when i run python3 xlr8.py I get this :
89gajoe3dzWUXNlpfDt8GHfd4rau4uzlzuZXqjPvjYQWswuziPKIvfShJGqwzN0O7HSZ9br0Jr56bAdQc4qIYqYyf84WOYMvvxrlFExAf1Kt8MhqlWf24ikmDq99CA8u/+TDnOMhwbgP2Nukprd5hIGzQNQNdW2X7S1LsGFtS0UDs0nH2NOHNSGZBPwKyrob9doiJHr/n9hkxvQHNv2jSwOOfCgt97MBQyUVd8NPDLu4gzQjMEJ4dSRx3ml6c2PCLx4VsB7oits1+pkb86CmmytMoG8q7XTLVrtn6rpPCrDSoztRAbbxDsed8g7873DPtM49JyxxQDjVklYXhYheke4/AgcRWDcNQlWiCFGKkegG401DFUaBtQ4+D8B5YeMGq5blMl2mU3wr3SfSKstGiUc0p0viP7LMe74cnFhchaMn2lD9B3ZZt8shxjNH2W/knU7Zs5ZjUaFunUrebY0QykTX3SHgquljKrJzzeNEt2AjH7hX1C2l3UBazuM84gSIuUG21H9nwuXHKV7PmysUaK9PoKDS+tmLD1zlhyC1X1NIhwahVlbfaI2Z5VplfCJuujI7t3pTIX/BQhbSZ8RYiWqhphIZp/XE6fXegAJosLAsnntoEauVqL/BJD+347Nwm4cXv39DCaO+rnQG8k7XMxVMUgSI708BfKtn1/koAG9clntccFlBpyOffj1ejauLl0yPJ7BPNRgk9rD24kslIKvpgsWkymf6+iv0Hr2cYCKy+SYYiuzw7WbLxr66qlI1BekANnYmP88+U+JgPI294skOsjSaNZK4xoXrYFxEEgKE2RrsrEYbCkDsBOwFIyjQsrv+96YI/KHKkMbKsrpe3ugQMbVRRrJCfIo1iaa8ou4zjmMxd/ujO4s0e0A5QOOA/ZAaPzxG95NosyVBxLBBbCbaJ9wNQb1DZVI++m0eUHJUUTmaEIJhnBv+X4QiLMpPstnDOX00hD4FmPyzU9ZzCamfra2Is7sCBhyf8FFEGyvoD9SbrxjFJqYbyCi+O2G5zsCnCsc3/Jty/7o5tdUeoSoxP2TgzbtwPDsAcNC1X3T3pBJzXPKSFuUFHwUCVnglzdEPVRHGM0AVQwb8lVXl9DbE99VO9h1gNEzcLsOlw+PwI6mcjQJsKtthf5MpfKbtdC/Pudh5t3nSXX/+lUbavauw1uRK4ru/45PCIb4MOmoOvWBIrPN4zX+fzKvJtiskoICfAQTALC2w+P1L8qc3A9G8bUyt7faysh4LtO7PmNOwEQW5tl+yD03CveecsXUIVgyFhuMErsd37A+nHdiW498elua4tpGGBftOPiTi+swfa8WmCRe/vB97h7ExsWIBX7Z3Nf53JUosPJtpI1uJG0PKu5QR1rxSNySH3W6sDjSkAlMNCqLgf2ImoJ5R5jcwiYl6hd5iGGHzt+AbFBMz8nUKSH3YDxWZy/Qz7b7akgohLlP4bJYLujzD+nVUZmyVQqwTKDX70Dyajg8Wqa+4rJNhWYb4FJZ991thrpIzhYyTXdBo8iioP4mWsQ3Uf7vuOnTDfPCt8O7wWGtYwh4fbgKd1iEEea7MnBidiAeQTS8baPOaYwnzGNxFzQZLhlw07SxpAS0CW/21tf6TU4p2O5Br5ySOlbKP032b6bvruGoGZbdjcRQis6Yt/ojeMz97ev2s34MIJ3YUbB3UTDR6pv0K4xV5R8/Fs/Kz1+8UTg9+iTyvSrMRoLtCAyaaFvzkZtiEt1nVQS7/aT3oY5OQz/NTbHwucMbNJMmN+lGv+jvjEE2yAzhzt77Kw0O3xb6xsD3FHnTku+fhYiswSu0nJ+incgqNv8tqMbvLn5sPLRrYz5XVStCsp2yPTAhLWo8YA7WNNQ/UWj5ZDQNg7OptRSfhaSRnNPDRereRiqqPfzwlS3PnQeFmWsWE9iHVJP3EDw49FjZPLWL3EQy8f1N63tfHD8xwh79i/UUPGlWSz0VKn1lU1YxAa0QlI76GmJ7tBpDeNzOGBoU83i6F9sYwXbDORIJz78Pc98bIqdZXx4uabxuahaCEbBRVfMQPf9QZ95VAK09ZAzuzVMDRG0vTvS3t6/Tk39rzWTL7JWBCJkFTM8FnnTAJJRrPElO0+sXVb6+EsH4hGGAuqF09t+8htUrjwmO9uTJyzJfW0VuVQatjVNTT8U1fFKMa84OWYlbPUBncoxi/eeDxutJQDDRVHwdAvAVTV1vbczAUoXFHwZxpmMYTZK9pOm61c4CU3E1wPijYAnCDbgvylWM1qDrjsCxnuuKb9uo6jK8z+zJFS5QdBlOYeIoSJp2XJuJt6ilZupA20Hn2HWFVa5EoC5HIU7wGqbisftL7Ah/OCvFsBGw6zgFl+uMwo83wFBTZov+it1Csq6RJ8SVVcuTannUHuqTLCzHQJa9tRPyH04P5YnOQRkvzpPHZTfZ9sjEkzcaWjfzH8B4aezpANZMYbnOz5zyBP/QR4ecLTtJo5W/W206RhFyGS28OIgbYMR3SQh81p52YjjRF6bmgFKBVoYhpj8M/0jHonbIFDlSc2DkWNAh8Iz0vA6QNp23ZfuQWieJIJQGFlPOjA5hj5K1bOXB/CCx1czBi9ASutzLvfwNaPQt2WOFxS1P+4R1CzRf09oJC4+5byMLeLAZI2hUG7aBbdMjJJnrOibSXBCoKEdfWs108K7mPMJzbxSTz4n86T11K7SuNju5Ztzrp9TIKfYjAX99xNb31tSUxHr7zrz52Y3wNtyC0rSqUfS23MEbKFboflHPbEy6j1I/nuOYolcGek+tq1Ht9kfE657FhMz6oS46N2EBCisOz4VrvL+F5jRp3lBADcpPLGvHT9Efo1YAQnYJahxrZGRdtQkJgzKcesOR/kZklDKABWd2B5hMDYjZD3gqKq49ZHeJQiuLfx5yVdFz8HBX/KVLKB1a3dBpT/EfKTZaZh/JkPAozCml9iIwhckpo4jESmV2pUD6grggWARacvd27z4GNwx61zXA8WY30uOSu0a0GM5dHuaoG0YXtO4pu0lcEKL1oTFV/oyQLNaBa33RQZ/0iLaUumaMPE1C0xCGphAoXiKjYzw9a0ZQtAAVmgdZ4kXVs8HoGlGfFF5PKY6Dcs0+srWsI6CAwh+F0ODE5jVEmJHO0//aGThRg9XkOLWD9bZZLV/k5HULpUR5M9lQuyUeUyNKx06PkISp5/tUKHwENDE0LZNmaV5LILpnzVvinbsQDlzNt2496S/EUVxxrUncpTBOuoe+VUbNpWwekI+CWvMvz8eN53NILdO91om9b9QJS6fmUw6YrJY0eTAsCBZoZNIq1r1BXpwZIxsOhjSXshCH1N3fWdkgExIvUkmfBepIi73uhm/hnoUez/5waNT0q8RczjzxJ8WIFShxzq3x9kIv8SKhRl7lW91a+K3Oa+2RzlX8nVdn6BJG+V0jg1z+hHtGt59ecN2HbbF4AvOqSAosUnrN+NbKVKUem19I99gt8VaveHmzccSTfzjheMIh20Tr1L6UafZQ7Jx1OypxoMH6/HNY+n5NVB9tVb1EUZ28e3CvwqUkQqkICh2CyGrlwCcTUqjcrKNIJjQDz69Bhm7DziR8pLW4Rwau/5mhktQj5OfAKfqT58osyD77HJCLnDWwXo703moQFWpElFvHylmEC0T26t+nGtueLJNxHW+FpkY7UgXhQeMaHjjJ0iZZ1MzwdrGsc837rEag2Ns+4RhnS9z9YNwWHdKLcSAduA1zEw7T3V4fHWZYYe1qRRM0P/l1/fR15cwLRgNKyKs3WoJbR7Q26N8W10qV5wHxp4WW0hk971rEzExBI+fG46R+4dhCpXYHlwu1HTQcNH5cN2XB84KStxQIjKUeuQe8vko6p8Uq6ewwNs6OgrnpIhJQUR7gGvhy2VFdSn8xBybyLzWQaklsxDvtRxJst7HiuSXoOFXm6p0SpWVYmHTtI23a5CSMP6dzLIYfYBciTWbJl+m9kDNv3MBMiVB6Q2I5eRmq8FB9sq/Y2yoxgGq7xsu2alCTD1l67MrUgKNdWV/AjX6Qcxf0ZdCBy6f/XmN8SIyadt5n6IWF3E2aB2PONJs9oX2jCJmqpX3z/WP+PIcK44hQTqnr3MWoAvrMXngN0HCi3ENdCqd2z0u7Fq8PUiZCJgq0tLH5XgNHm2G8PyoxyURRXGmQ8vFVmwUCPCWjYlbBtmmg/u3Thr4B+FQZ42JBLhCc4oGwxacH5SCQX9rnl8+hKus7v7Dg0Uqsc+8GexStdCINL4+RXluALTFc+kUH5zkEQ/BKewGM6VCgbs+9XWKyKXnyJjbutxAeX9bBrHRKkGQof5ye5fkaX9id+UpOSqrFuqhIK/N+cZV1zAz+28I3gcUWIsw3pNS8bzK8borZxy2m0lpCfn5rr34sD77gdIl8nqqipx+mQjY4ul7JDBr1l74tG3Twu6jM3Qghqvwbv6sjMOjf4V1jBTNunY6M+UmjpC2OSv3QFx5kAkaU5MzFJicqfhhgqYJts/VKq1wJtGSHX7E1kUbkWzXUhDG43dDwXUIxxTdKwS2RItZJh5q6BSMRdZTQmH21RTDZNtJ4K5XK5Ilc4R8eP1JvGjtKzGt3CAadgxLGldycYQdh2oNgcURqFBIg7T8++jpFDidmpj69wL6vN/h4LmhTokKm7fDCMS8Nw60BUfYbZVg9vFFokXUCxMC7pd4d4or41h/vIlRfkvUfnsoXxw33zVJcobmZH1GTboUr193EVfB5Ib7R6T8M4DmVPQaQf/he7jGth/tXO5BPyJX0/638hUKtVY/1gHvkTy9gJgRsZ/uWLyofTWtzYsgozcDkFuHoGetWUgHtRB050xNsO7YDWiVCSb3pm7XaM1/uX3A+KioOoRC/ebwTBUfrr9BlIDUdGkSEv1+6I7jvePhDctBM4f2ToYpQ0o54V3QKaX4HNwCjMDWgIwrMfUzpRWjRoo5vJaUYnQKFbi2p3VaePLHOK4eJahCLS6vU5mLkhjdCLPjlRJXJsPVeo+CbbtCNx91XgMiteq3k/ATdFrQ8cTjqHvT+lLqqQ+gk+WKAOwR5CYm4fQcK9TJjJPRtkE9o3X7X3q41yOtEIlt0kECGHUC6ZcgZQ22MZ8c4OLAJmJQ+LTGm7iEDEz9kdSQYUdvGcDIwhC1ChsrzHCvVa9IDLpPrlOW2M7iGvt3Px4o6SdRaWBKFqXiI+AqzgW1RcaqezwSObU8fyKmx73OUkZzUXqJPUrR67mAIamKNUusU+0MxXg3mlseMeWrkywp9yR24TUwTk2MD4mhXCWIn4gwuBjfW5JdBBfModCAN5j8AGOr/Fbgft932j7mfFrcwDPd3fI1TddcKy1HjqZG1MBI/kKQDnpcx1xTJSK7yf4HOsTAyg8EaTQxgpMBjDf3UHnd2hfcCWhsGqEEUVyv8roCIGHUvEGo168Yk0JEn3fQ0MkCrTBFqYLzkffwVeVqk/l62cEn6dsAt3vc32IWHXfcNvBAmqzWkkwCEyc9l3sS3vlQHoio6rWHxsUfu2qnIqW55GypP2D8pVTjKKjqZs062zLmhTP0CVZnuTXBZwzZTPMmjQhFDzNwoVJQDRWz2R3odLvcTJjVM1BMFopfzGj0WRUvin5HPZPlkuurhb1LwJv80JuqkLBCMyNJAic/MiDHTmJ8o1jRtf9goEXdO57MN1A0twc1fHA980vQT8AxAEQwXAsQLcgQH/RIAfAYRlCoSgAG0kRt2gLo+EH1QlLGCw4LCC4DHVoGg//852/fcx+/3nv/6/fS99/3X13/fPz/ri/ZxO5/vbvW+/Xb+/54/53flL613eXtYIzQUiE4EowV6UAl3UG9oafWvvDUi03TvobYrBAt7AGMoPBkHCHoW7/fnWqc9OcTmdxJe'))