-
Notifications
You must be signed in to change notification settings - Fork 847
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
* Faster i256 Division (2-100x) (#4663) * Clippy * Use inline assembly * Fix non-x64 * Add repr(C) * More docs * Format
- Loading branch information
Showing
3 changed files
with
375 additions
and
70 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,312 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
//! N-digit division | ||
//! | ||
//! Implementation heavily inspired by [uint] | ||
//! | ||
//! [uint]: https://github.com/paritytech/parity-common/blob/d3a9327124a66e52ca1114bb8640c02c18c134b8/uint/src/uint.rs#L844 | ||
/// Unsigned, little-endian, n-digit division with remainder | ||
/// | ||
/// # Panics | ||
/// | ||
/// Panics if divisor is zero | ||
pub fn div_rem<const N: usize>( | ||
numerator: &[u64; N], | ||
divisor: &[u64; N], | ||
) -> ([u64; N], [u64; N]) { | ||
let numerator_bits = bits(numerator); | ||
let divisor_bits = bits(divisor); | ||
assert_ne!(divisor_bits, 0, "division by zero"); | ||
|
||
if numerator_bits < divisor_bits { | ||
return ([0; N], *numerator); | ||
} | ||
|
||
if divisor_bits <= 64 { | ||
return div_rem_small(numerator, divisor[0]); | ||
} | ||
|
||
let numerator_words = (numerator_bits + 63) / 64; | ||
let divisor_words = (divisor_bits + 63) / 64; | ||
let n = divisor_words; | ||
let m = numerator_words - divisor_words; | ||
|
||
div_rem_knuth(numerator, divisor, n, m) | ||
} | ||
|
||
/// Return the least number of bits needed to represent the number | ||
fn bits(arr: &[u64]) -> usize { | ||
for (idx, v) in arr.iter().enumerate().rev() { | ||
if *v > 0 { | ||
return 64 - v.leading_zeros() as usize + 64 * idx; | ||
} | ||
} | ||
0 | ||
} | ||
|
||
/// Division of numerator by a u64 divisor | ||
fn div_rem_small<const N: usize>( | ||
numerator: &[u64; N], | ||
divisor: u64, | ||
) -> ([u64; N], [u64; N]) { | ||
let mut rem = 0u64; | ||
let mut numerator = *numerator; | ||
numerator.iter_mut().rev().for_each(|d| { | ||
let (q, r) = div_rem_word(rem, *d, divisor); | ||
*d = q; | ||
rem = r; | ||
}); | ||
|
||
let mut rem_padded = [0; N]; | ||
rem_padded[0] = rem; | ||
(numerator, rem_padded) | ||
} | ||
|
||
/// Use Knuth Algorithm D to compute `numerator / divisor` returning the | ||
/// quotient and remainder | ||
/// | ||
/// `n` is the number of non-zero 64-bit words in `divisor` | ||
/// `m` is the number of non-zero 64-bit words present in `numerator` beyond `divisor`, and | ||
/// therefore the number of words in the quotient | ||
/// | ||
/// A good explanation of the algorithm can be found [here](https://ridiculousfish.com/blog/posts/labor-of-division-episode-iv.html) | ||
fn div_rem_knuth<const N: usize>( | ||
numerator: &[u64; N], | ||
divisor: &[u64; N], | ||
n: usize, | ||
m: usize, | ||
) -> ([u64; N], [u64; N]) { | ||
assert!(n + m <= N); | ||
|
||
// The algorithm works by incrementally generating guesses `q_hat`, for the next digit | ||
// of the quotient, starting from the most significant digit. | ||
// | ||
// This relies on the property that for any `q_hat` where | ||
// | ||
// (q_hat << (j * 64)) * divisor <= numerator` | ||
// | ||
// We can set | ||
// | ||
// q += q_hat << (j * 64) | ||
// numerator -= (q_hat << (j * 64)) * divisor | ||
// | ||
// And then iterate until `numerator < divisor` | ||
|
||
// We normalize the divisor so that the highest bit in the highest digit of the | ||
// divisor is set, this ensures our initial guess of `q_hat` is at most 2 off from | ||
// the correct value for q[j] | ||
let shift = divisor[n - 1].leading_zeros(); | ||
// As the shift is computed based on leading zeros, don't need to perform full_shl | ||
let divisor = shl_word(divisor, shift); | ||
// numerator may have fewer leading zeros than divisor, so must add another digit | ||
let mut numerator = full_shl(numerator, shift); | ||
|
||
// The two most significant digits of the divisor | ||
let b0 = divisor[n - 1]; | ||
let b1 = divisor[n - 2]; | ||
|
||
let mut q = [0; N]; | ||
|
||
for j in (0..=m).rev() { | ||
let a0 = numerator[j + n]; | ||
let a1 = numerator[j + n - 1]; | ||
|
||
let mut q_hat = if a0 < b0 { | ||
// The first estimate is [a1, a0] / b0, it may be too large by at most 2 | ||
let (mut q_hat, mut r_hat) = div_rem_word(a0, a1, b0); | ||
|
||
// r_hat = [a1, a0] - q_hat * b0 | ||
// | ||
// Now we want to compute a more precise estimate [a2,a1,a0] / [b1,b0] | ||
// which can only be less or equal to the current q_hat | ||
// | ||
// q_hat is too large if: | ||
// [a2,a1,a0] < q_hat * [b1,b0] | ||
// [a2,r_hat] < q_hat * b1 | ||
let a2 = numerator[j + n - 2]; | ||
loop { | ||
let r = u128::from(q_hat) * u128::from(b1); | ||
let (lo, hi) = (r as u64, (r >> 64) as u64); | ||
if (hi, lo) <= (r_hat, a2) { | ||
break; | ||
} | ||
|
||
q_hat -= 1; | ||
let (new_r_hat, overflow) = r_hat.overflowing_add(b0); | ||
r_hat = new_r_hat; | ||
|
||
if overflow { | ||
break; | ||
} | ||
} | ||
q_hat | ||
} else { | ||
u64::MAX | ||
}; | ||
|
||
// q_hat is now either the correct quotient digit, or in rare cases 1 too large | ||
|
||
// Compute numerator -= (q_hat * divisor) << (j * 64) | ||
let q_hat_v = full_mul_u64(&divisor, q_hat); | ||
let c = sub_assign(&mut numerator[j..], &q_hat_v[..n + 1]); | ||
|
||
// If underflow, q_hat was too large by 1 | ||
if c { | ||
// Reduce q_hat by 1 | ||
q_hat -= 1; | ||
|
||
// Add back one multiple of divisor | ||
let c = add_assign(&mut numerator[j..], &divisor[..n]); | ||
numerator[j + n] = numerator[j + n].wrapping_add(u64::from(c)); | ||
} | ||
|
||
// q_hat is the correct value for q[j] | ||
q[j] = q_hat; | ||
} | ||
|
||
// The remainder is what is left in numerator, with the initial normalization shl reversed | ||
let remainder = full_shr(&numerator, shift); | ||
(q, remainder) | ||
} | ||
|
||
/// Perform narrowing division of a u128 by a u64 divisor, returning the quotient and remainder | ||
/// | ||
/// This method may trap or panic if hi >= divisor, i.e. the quotient would not fit | ||
/// into a 64-bit integer | ||
fn div_rem_word(hi: u64, lo: u64, divisor: u64) -> (u64, u64) { | ||
debug_assert!(hi < divisor); | ||
debug_assert_ne!(divisor, 0); | ||
|
||
// LLVM fails to use the div instruction as it is not able to prove | ||
// that hi < divisor, and therefore the result will fit into 64-bits | ||
#[cfg(target_arch = "x86_64")] | ||
unsafe { | ||
let mut quot = lo; | ||
let mut rem = hi; | ||
std::arch::asm!( | ||
"div {divisor}", | ||
divisor = in(reg) divisor, | ||
inout("rax") quot, | ||
inout("rdx") rem, | ||
options(pure, nomem, nostack) | ||
); | ||
(quot, rem) | ||
} | ||
#[cfg(not(target_arch = "x86_64"))] | ||
{ | ||
let x = (u128::from(hi) << 64) + u128::from(lo); | ||
let y = u128::from(divisor); | ||
((x / y) as u64, (x % y) as u64) | ||
} | ||
} | ||
|
||
/// Perform `a += b` | ||
fn add_assign(a: &mut [u64], b: &[u64]) -> bool { | ||
binop_slice(a, b, u64::overflowing_add) | ||
} | ||
|
||
/// Perform `a -= b` | ||
fn sub_assign(a: &mut [u64], b: &[u64]) -> bool { | ||
binop_slice(a, b, u64::overflowing_sub) | ||
} | ||
|
||
/// Converts an overflowing binary operation on scalars to one on slices | ||
fn binop_slice( | ||
a: &mut [u64], | ||
b: &[u64], | ||
binop: impl Fn(u64, u64) -> (u64, bool) + Copy, | ||
) -> bool { | ||
let mut c = false; | ||
a.iter_mut().zip(b.iter()).for_each(|(x, y)| { | ||
let (res1, overflow1) = y.overflowing_add(u64::from(c)); | ||
let (res2, overflow2) = binop(*x, res1); | ||
*x = res2; | ||
c = overflow1 || overflow2; | ||
}); | ||
c | ||
} | ||
|
||
/// Widening multiplication of an N-digit array with a u64 | ||
fn full_mul_u64<const N: usize>(a: &[u64; N], b: u64) -> ArrayPlusOne<u64, N> { | ||
let mut carry = 0; | ||
let mut out = [0; N]; | ||
out.iter_mut().zip(a).for_each(|(o, v)| { | ||
let r = *v as u128 * b as u128 + carry as u128; | ||
*o = r as u64; | ||
carry = (r >> 64) as u64; | ||
}); | ||
ArrayPlusOne(out, carry) | ||
} | ||
|
||
/// Left shift of an N-digit array by at most 63 bits | ||
fn shl_word<const N: usize>(v: &[u64; N], shift: u32) -> [u64; N] { | ||
full_shl(v, shift).0 | ||
} | ||
|
||
/// Widening left shift of an N-digit array by at most 63 bits | ||
fn full_shl<const N: usize>(v: &[u64; N], shift: u32) -> ArrayPlusOne<u64, N> { | ||
debug_assert!(shift < 64); | ||
if shift == 0 { | ||
return ArrayPlusOne(*v, 0); | ||
} | ||
let mut out = [0u64; N]; | ||
out[0] = v[0] << shift; | ||
for i in 1..N { | ||
out[i] = v[i - 1] >> (64 - shift) | v[i] << shift | ||
} | ||
let carry = v[N - 1] >> (64 - shift); | ||
ArrayPlusOne(out, carry) | ||
} | ||
|
||
/// Narrowing right shift of an (N+1)-digit array by at most 63 bits | ||
fn full_shr<const N: usize>(a: &ArrayPlusOne<u64, N>, shift: u32) -> [u64; N] { | ||
debug_assert!(shift < 64); | ||
if shift == 0 { | ||
return a.0; | ||
} | ||
let mut out = [0; N]; | ||
for i in 0..N - 1 { | ||
out[i] = a[i] >> shift | a[i + 1] << (64 - shift) | ||
} | ||
out[N - 1] = a[N - 1] >> shift; | ||
out | ||
} | ||
|
||
/// An array of N + 1 elements | ||
/// | ||
/// This is a hack around lack of support for const arithmetic | ||
#[repr(C)] | ||
struct ArrayPlusOne<T, const N: usize>([T; N], T); | ||
|
||
impl<T, const N: usize> std::ops::Deref for ArrayPlusOne<T, N> { | ||
type Target = [T]; | ||
|
||
#[inline] | ||
fn deref(&self) -> &Self::Target { | ||
let x = self as *const Self; | ||
unsafe { std::slice::from_raw_parts(x as *const T, N + 1) } | ||
} | ||
} | ||
|
||
impl<T, const N: usize> std::ops::DerefMut for ArrayPlusOne<T, N> { | ||
fn deref_mut(&mut self) -> &mut Self::Target { | ||
let x = self as *mut Self; | ||
unsafe { std::slice::from_raw_parts_mut(x as *mut T, N + 1) } | ||
} | ||
} |
Oops, something went wrong.