-
Notifications
You must be signed in to change notification settings - Fork 1k
Add benchmarks for arrow-avro writer #8165
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -83,4 +83,8 @@ harness = false | |
|
||
[[bench]] | ||
name = "decoder" | ||
harness = false | ||
|
||
[[bench]] | ||
name = "avro_writer" | ||
harness = false |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,324 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
//! Benchmarks for `arrow‑avro` **Writer** (Avro Object Container Files) | ||
//! | ||
|
||
extern crate arrow_avro; | ||
extern crate criterion; | ||
extern crate once_cell; | ||
|
||
use arrow_array::{ | ||
types::{Int32Type, Int64Type, TimestampMicrosecondType}, | ||
ArrayRef, BinaryArray, BooleanArray, Float32Array, Float64Array, PrimitiveArray, RecordBatch, | ||
}; | ||
use arrow_avro::writer::AvroWriter; | ||
use arrow_schema::{DataType, Field, Schema, TimeUnit}; | ||
use criterion::{criterion_group, criterion_main, BatchSize, BenchmarkId, Criterion, Throughput}; | ||
use once_cell::sync::Lazy; | ||
use rand::{ | ||
distr::uniform::{SampleRange, SampleUniform}, | ||
rngs::StdRng, | ||
Rng, SeedableRng, | ||
}; | ||
use std::io::Cursor; | ||
use std::sync::Arc; | ||
use std::time::Duration; | ||
use tempfile::tempfile; | ||
|
||
const SIZES: [usize; 4] = [4_096, 8_192, 100_000, 1_000_000]; | ||
const BASE_SEED: u64 = 0x5EED_1234_ABCD_EF01; | ||
const MIX_CONST_1: u64 = 0x9E37_79B1_85EB_CA87; | ||
const MIX_CONST_2: u64 = 0xC2B2_AE3D_27D4_EB4F; | ||
|
||
#[inline] | ||
fn rng_for(tag: u64, n: usize) -> StdRng { | ||
let seed = BASE_SEED ^ tag.wrapping_mul(MIX_CONST_1) ^ (n as u64).wrapping_mul(MIX_CONST_2); | ||
StdRng::seed_from_u64(seed) | ||
} | ||
|
||
#[inline] | ||
fn sample_in<T, Rg>(rng: &mut StdRng, range: Rg) -> T | ||
where | ||
T: SampleUniform, | ||
Rg: SampleRange<T>, | ||
{ | ||
rng.random_range(range) | ||
} | ||
|
||
#[inline] | ||
fn make_bool_array_with_tag(n: usize, tag: u64) -> BooleanArray { | ||
let mut rng = rng_for(tag, n); | ||
let values = (0..n).map(|_| rng.random_bool(0.5)); | ||
BooleanArray::from_iter(values.map(Some)) | ||
} | ||
|
||
#[inline] | ||
fn make_i32_array_with_tag(n: usize, tag: u64) -> PrimitiveArray<Int32Type> { | ||
let mut rng = rng_for(tag, n); | ||
let values = (0..n).map(|_| rng.random::<i32>()); | ||
PrimitiveArray::<Int32Type>::from_iter_values(values) | ||
} | ||
|
||
#[inline] | ||
fn make_i64_array_with_tag(n: usize, tag: u64) -> PrimitiveArray<Int64Type> { | ||
let mut rng = rng_for(tag, n); | ||
let values = (0..n).map(|_| rng.random::<i64>()); | ||
PrimitiveArray::<Int64Type>::from_iter_values(values) | ||
} | ||
|
||
#[inline] | ||
fn make_f32_array_with_tag(n: usize, tag: u64) -> Float32Array { | ||
let mut rng = rng_for(tag, n); | ||
let values = (0..n).map(|_| rng.random::<f32>()); | ||
Float32Array::from_iter_values(values) | ||
} | ||
|
||
#[inline] | ||
fn make_f64_array_with_tag(n: usize, tag: u64) -> Float64Array { | ||
let mut rng = rng_for(tag, n); | ||
let values = (0..n).map(|_| rng.random::<f64>()); | ||
Float64Array::from_iter_values(values) | ||
} | ||
|
||
#[inline] | ||
fn make_binary_array_with_tag(n: usize, tag: u64) -> BinaryArray { | ||
let mut rng = rng_for(tag, n); | ||
let mut payloads: Vec<[u8; 16]> = vec![[0; 16]; n]; | ||
for p in payloads.iter_mut() { | ||
rng.fill(&mut p[..]); | ||
} | ||
let views: Vec<&[u8]> = payloads.iter().map(|p| &p[..]).collect(); | ||
BinaryArray::from_vec(views) | ||
} | ||
|
||
#[inline] | ||
fn make_ts_micros_array_with_tag(n: usize, tag: u64) -> PrimitiveArray<TimestampMicrosecondType> { | ||
let mut rng = rng_for(tag, n); | ||
let base: i64 = 1_600_000_000_000_000; | ||
let year_us: i64 = 31_536_000_000_000; | ||
let values = (0..n).map(|_| base + sample_in::<i64, _>(&mut rng, 0..year_us)); | ||
PrimitiveArray::<TimestampMicrosecondType>::from_iter_values(values) | ||
} | ||
|
||
#[inline] | ||
fn make_bool_array(n: usize) -> BooleanArray { | ||
make_bool_array_with_tag(n, 0xB001) | ||
} | ||
#[inline] | ||
fn make_i32_array(n: usize) -> PrimitiveArray<Int32Type> { | ||
make_i32_array_with_tag(n, 0x1337_0032) | ||
} | ||
#[inline] | ||
fn make_i64_array(n: usize) -> PrimitiveArray<Int64Type> { | ||
make_i64_array_with_tag(n, 0x1337_0064) | ||
} | ||
#[inline] | ||
fn make_f32_array(n: usize) -> Float32Array { | ||
make_f32_array_with_tag(n, 0xF0_0032) | ||
} | ||
#[inline] | ||
fn make_f64_array(n: usize) -> Float64Array { | ||
make_f64_array_with_tag(n, 0xF0_0064) | ||
} | ||
#[inline] | ||
fn make_binary_array(n: usize) -> BinaryArray { | ||
make_binary_array_with_tag(n, 0xB1_0001) | ||
} | ||
#[inline] | ||
fn make_ts_micros_array(n: usize) -> PrimitiveArray<TimestampMicrosecondType> { | ||
make_ts_micros_array_with_tag(n, 0x7157_0001) | ||
} | ||
|
||
#[inline] | ||
fn schema_single(name: &str, dt: DataType) -> Arc<Schema> { | ||
Arc::new(Schema::new(vec![Field::new(name, dt, false)])) | ||
} | ||
|
||
#[inline] | ||
fn schema_mixed() -> Arc<Schema> { | ||
Arc::new(Schema::new(vec![ | ||
Field::new("f1", DataType::Int32, false), | ||
Field::new("f2", DataType::Int64, false), | ||
Field::new("f3", DataType::Binary, false), | ||
Field::new("f4", DataType::Float64, false), | ||
])) | ||
} | ||
|
||
static BOOLEAN_DATA: Lazy<Vec<RecordBatch>> = Lazy::new(|| { | ||
let schema = schema_single("field1", DataType::Boolean); | ||
SIZES | ||
.iter() | ||
.map(|&n| { | ||
let col: ArrayRef = Arc::new(make_bool_array(n)); | ||
RecordBatch::try_new(schema.clone(), vec![col]).unwrap() | ||
}) | ||
.collect() | ||
}); | ||
|
||
static INT32_DATA: Lazy<Vec<RecordBatch>> = Lazy::new(|| { | ||
let schema = schema_single("field1", DataType::Int32); | ||
SIZES | ||
.iter() | ||
.map(|&n| { | ||
let col: ArrayRef = Arc::new(make_i32_array(n)); | ||
RecordBatch::try_new(schema.clone(), vec![col]).unwrap() | ||
}) | ||
.collect() | ||
}); | ||
|
||
static INT64_DATA: Lazy<Vec<RecordBatch>> = Lazy::new(|| { | ||
let schema = schema_single("field1", DataType::Int64); | ||
SIZES | ||
.iter() | ||
.map(|&n| { | ||
let col: ArrayRef = Arc::new(make_i64_array(n)); | ||
RecordBatch::try_new(schema.clone(), vec![col]).unwrap() | ||
}) | ||
.collect() | ||
}); | ||
|
||
static FLOAT32_DATA: Lazy<Vec<RecordBatch>> = Lazy::new(|| { | ||
let schema = schema_single("field1", DataType::Float32); | ||
SIZES | ||
.iter() | ||
.map(|&n| { | ||
let col: ArrayRef = Arc::new(make_f32_array(n)); | ||
RecordBatch::try_new(schema.clone(), vec![col]).unwrap() | ||
}) | ||
.collect() | ||
}); | ||
|
||
static FLOAT64_DATA: Lazy<Vec<RecordBatch>> = Lazy::new(|| { | ||
let schema = schema_single("field1", DataType::Float64); | ||
SIZES | ||
.iter() | ||
.map(|&n| { | ||
let col: ArrayRef = Arc::new(make_f64_array(n)); | ||
RecordBatch::try_new(schema.clone(), vec![col]).unwrap() | ||
}) | ||
.collect() | ||
}); | ||
|
||
static BINARY_DATA: Lazy<Vec<RecordBatch>> = Lazy::new(|| { | ||
let schema = schema_single("field1", DataType::Binary); | ||
SIZES | ||
.iter() | ||
.map(|&n| { | ||
let col: ArrayRef = Arc::new(make_binary_array(n)); | ||
RecordBatch::try_new(schema.clone(), vec![col]).unwrap() | ||
}) | ||
.collect() | ||
}); | ||
|
||
static TIMESTAMP_US_DATA: Lazy<Vec<RecordBatch>> = Lazy::new(|| { | ||
let schema = schema_single("field1", DataType::Timestamp(TimeUnit::Microsecond, None)); | ||
SIZES | ||
.iter() | ||
.map(|&n| { | ||
let col: ArrayRef = Arc::new(make_ts_micros_array(n)); | ||
RecordBatch::try_new(schema.clone(), vec![col]).unwrap() | ||
}) | ||
.collect() | ||
}); | ||
|
||
static MIXED_DATA: Lazy<Vec<RecordBatch>> = Lazy::new(|| { | ||
let schema = schema_mixed(); | ||
SIZES | ||
.iter() | ||
.map(|&n| { | ||
let f1: ArrayRef = Arc::new(make_i32_array_with_tag(n, 0xA1)); | ||
let f2: ArrayRef = Arc::new(make_i64_array_with_tag(n, 0xA2)); | ||
let f3: ArrayRef = Arc::new(make_binary_array_with_tag(n, 0xA3)); | ||
let f4: ArrayRef = Arc::new(make_f64_array_with_tag(n, 0xA4)); | ||
RecordBatch::try_new(schema.clone(), vec![f1, f2, f3, f4]).unwrap() | ||
}) | ||
.collect() | ||
}); | ||
|
||
fn ocf_size_for_batch(batch: &RecordBatch) -> usize { | ||
let schema_owned: Schema = (*batch.schema()).clone(); | ||
let cursor = Cursor::new(Vec::<u8>::with_capacity(1024)); | ||
let mut writer = AvroWriter::new(cursor, schema_owned).expect("create writer"); | ||
writer.write(batch).expect("write batch"); | ||
writer.finish().expect("finish writer"); | ||
let inner = writer.into_inner(); | ||
inner.into_inner().len() | ||
} | ||
|
||
fn bench_writer_scenario(c: &mut Criterion, name: &str, data_sets: &[RecordBatch]) { | ||
let mut group = c.benchmark_group(name); | ||
let schema_owned: Schema = (*data_sets[0].schema()).clone(); | ||
for (idx, &rows) in SIZES.iter().enumerate() { | ||
let batch = &data_sets[idx]; | ||
let bytes = ocf_size_for_batch(batch); | ||
group.throughput(Throughput::Bytes(bytes as u64)); | ||
match rows { | ||
4_096 | 8_192 => { | ||
group | ||
.sample_size(40) | ||
.measurement_time(Duration::from_secs(10)) | ||
.warm_up_time(Duration::from_secs(3)); | ||
} | ||
100_000 => { | ||
group | ||
.sample_size(20) | ||
.measurement_time(Duration::from_secs(10)) | ||
.warm_up_time(Duration::from_secs(3)); | ||
} | ||
1_000_000 => { | ||
group | ||
.sample_size(10) | ||
.measurement_time(Duration::from_secs(10)) | ||
.warm_up_time(Duration::from_secs(3)); | ||
} | ||
_ => {} | ||
} | ||
group.bench_function(BenchmarkId::from_parameter(rows), |b| { | ||
b.iter_batched_ref( | ||
|| { | ||
let file = tempfile().expect("create temp file"); | ||
AvroWriter::new(file, schema_owned.clone()).expect("create writer") | ||
}, | ||
|writer| { | ||
writer.write(batch).unwrap(); | ||
writer.finish().unwrap(); | ||
}, | ||
BatchSize::SmallInput, | ||
) | ||
}); | ||
} | ||
group.finish(); | ||
} | ||
|
||
fn criterion_benches(c: &mut Criterion) { | ||
bench_writer_scenario(c, "write-Boolean", &BOOLEAN_DATA); | ||
bench_writer_scenario(c, "write-Int32", &INT32_DATA); | ||
bench_writer_scenario(c, "write-Int64", &INT64_DATA); | ||
bench_writer_scenario(c, "write-Float32", &FLOAT32_DATA); | ||
bench_writer_scenario(c, "write-Float64", &FLOAT64_DATA); | ||
bench_writer_scenario(c, "write-Binary(Bytes)", &BINARY_DATA); | ||
bench_writer_scenario(c, "write-TimestampMicros", &TIMESTAMP_US_DATA); | ||
bench_writer_scenario(c, "write-Mixed", &MIXED_DATA); | ||
} | ||
|
||
criterion_group! { | ||
name = avro_writer; | ||
config = Criterion::default().configure_from_args(); | ||
targets = criterion_benches | ||
} | ||
criterion_main!(avro_writer); |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
What does OCF size mean?
Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It's the size of the Avro Object Container File.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Also to be a bit more clear, my intention here was to feed this
usize
byte count value intoThroughput::Bytes()
so Criterion reports MB/s for actual on‑disk OCF bytes written per iteration.