Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ARROW-89: [Python] Add benchmarks for Arrow<->Pandas conversion #51

Closed
wants to merge 2 commits into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 50 additions & 5 deletions python/benchmarks/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,22 +15,67 @@
# specific language governing permissions and limitations
# under the License.

import pyarrow
import numpy as np
import pandas as pd
import pyarrow as A

class Conversions(object):

class PyListConversions(object):
param_names = ('size',)
params = (1, 10 ** 5, 10 ** 6, 10 ** 7)

def setup(self, n):
self.data = list(range(n))

def time_from_pylist(self, n):
pyarrow.from_pylist(list(range(n)))
A.from_pylist(self.data)

def peakmem_from_pylist(self, n):
pyarrow.from_pylist(list(range(n)))
A.from_pylist(self.data)


class PandasConversionsBase(object):
def setup(self, n, dtype):
if dtype == 'float64_nans':
arr = np.arange(n).astype('float64')
arr[arr % 10 == 0] = np.nan
else:
arr = np.arange(n).astype(dtype)
self.data = pd.DataFrame({'column': arr})


class PandasConversionsToArrow(PandasConversionsBase):
param_names = ('size', 'dtype')
params = ((1, 10 ** 5, 10 ** 6, 10 ** 7), ('int64', 'float64', 'float64_nans', 'str'))

def time_from_series(self, n, dtype):
A.from_pandas_dataframe(self.data)

def peakmem_from_series(self, n, dtype):
A.from_pandas_dataframe(self.data)


class PandasConversionsFromArrow(PandasConversionsBase):
param_names = ('size', 'dtype')
params = ((1, 10 ** 5, 10 ** 6, 10 ** 7), ('int64', 'float64', 'float64_nans', 'str'))

def setup(self, n, dtype):
super(PandasConversionsFromArrow, self).setup(n, dtype)
self.arrow_data = A.from_pandas_dataframe(self.data)

def time_to_series(self, n, dtype):
self.arrow_data.to_pandas()

def peakmem_to_series(self, n, dtype):
self.arrow_data.to_pandas()


class ScalarAccess(object):
param_names = ('size',)
params = (1, 10 ** 5, 10 ** 6, 10 ** 7)

def setUp(self, n):
self._array = pyarrow.from_pylist(list(range(n)))
self._array = A.from_pylist(list(range(n)))

def time_as_py(self, n):
for i in range(n):
Expand Down