[DO NOT MERGE] Run all PostCommit and PreCommit Tests against Release Branch #3843
GitHub Actions / Test Results
failed
Feb 5, 2025 in 0s
2 fail, 19 skipped, 1 pass in 36m 30s
Annotations
Check warning on line 0 in apache_beam.examples.wordcount_it_test.WordCountIT
github-actions / Test Results
test_wordcount_it (apache_beam.examples.wordcount_it_test.WordCountIT) failed
sdks/python/pytest-beam_python3.11_sdk.xml [took 3s]
Raw output
apitools.base.py.exceptions.HttpBadRequestError: HttpError accessing <https://dataflow.googleapis.com/v1b3/projects/apache-beam-testing/locations/us-central1/jobs?alt=json>: response: <{'vary': 'Origin, X-Origin, Referer', 'content-type': 'application/json; charset=UTF-8', 'date': 'Wed, 05 Feb 2025 18:11:12 GMT', 'server': 'ESF', 'x-xss-protection': '0', 'x-frame-options': 'SAMEORIGIN', 'x-content-type-options': 'nosniff', 'transfer-encoding': 'chunked', 'status': '400', 'content-length': '491', '-content-encoding': 'gzip'}>, content <{
"error": {
"code": 400,
"message": "(ee0a15594bfa4c23): The workflow could not be created. Causes: (8525f2a8d802af5): Dataflow quota error for jobs-per-project quota. Project apache-beam-testing is running 299 jobs. Please check the quota usage via GCP Console. If it exceeds the limit, please wait for a workflow to finish or contact Google Cloud Support to request an increase in quota. If it does not, contact Google Cloud Support.",
"status": "FAILED_PRECONDITION"
}
}
>
self = <apache_beam.examples.wordcount_it_test.WordCountIT testMethod=test_wordcount_it>
@pytest.mark.it_postcommit
@pytest.mark.it_validatescontainer
def test_wordcount_it(self):
> self._run_wordcount_it(wordcount.run)
apache_beam/examples/wordcount_it_test.py:50:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
apache_beam/examples/wordcount_it_test.py:150: in _run_wordcount_it
run_wordcount(
apache_beam/examples/wordcount.py:109: in run
result = pipeline.run()
apache_beam/pipeline.py:594: in run
self._options).run(False)
apache_beam/pipeline.py:618: in run
return self.runner.run_pipeline(self, self._options)
apache_beam/runners/dataflow/test_dataflow_runner.py:53: in run_pipeline
self.result = super().run_pipeline(pipeline, options)
apache_beam/runners/dataflow/dataflow_runner.py:502: in run_pipeline
self.dataflow_client.create_job(self.job), self)
apache_beam/utils/retry.py:298: in wrapper
return fun(*args, **kwargs)
apache_beam/runners/dataflow/internal/apiclient.py:759: in create_job
return self.submit_job_description(job)
apache_beam/utils/retry.py:298: in wrapper
return fun(*args, **kwargs)
apache_beam/runners/dataflow/internal/apiclient.py:865: in submit_job_description
response = self._client.projects_locations_jobs.Create(request)
apache_beam/runners/dataflow/internal/clients/dataflow/dataflow_v1b3_client.py:718: in Create
return self._RunMethod(config, request, global_params=global_params)
../../build/gradleenv/2050596099/lib/python3.11/site-packages/apitools/base/py/base_api.py:731: in _RunMethod
return self.ProcessHttpResponse(method_config, http_response, request)
../../build/gradleenv/2050596099/lib/python3.11/site-packages/apitools/base/py/base_api.py:737: in ProcessHttpResponse
self.__ProcessHttpResponse(method_config, http_response, request))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <apache_beam.runners.dataflow.internal.clients.dataflow.dataflow_v1b3_client.DataflowV1b3.ProjectsLocationsJobsService object at 0x7c48338e4c50>
method_config = <ApiMethodInfo
relative_path: 'v1b3/projects/{projectId}/locations/{location}/jobs'
method_id: 'dataflow.projects.lo...DataflowProjectsLocationsJobsCreateRequest'
response_type_name: 'Job'
request_field: 'job'
supports_download: False>
http_response = Response(info={'vary': 'Origin, X-Origin, Referer', 'content-type': 'application/json; charset=UTF-8', 'date': 'Wed, 0...', request_url='https://dataflow.googleapis.com/v1b3/projects/apache-beam-testing/locations/us-central1/jobs?alt=json')
request = <DataflowProjectsLocationsJobsCreateRequest
job: <Job
clientRequestId: '20250205181110950328-5807'
environment: <En...empFiles: []
type: TypeValueValuesEnum(JOB_TYPE_BATCH, 1)>
location: 'us-central1'
projectId: 'apache-beam-testing'>
def __ProcessHttpResponse(self, method_config, http_response, request):
"""Process the given http response."""
if http_response.status_code not in (http_client.OK,
http_client.CREATED,
http_client.NO_CONTENT):
> raise exceptions.HttpError.FromResponse(
http_response, method_config=method_config, request=request)
E apitools.base.py.exceptions.HttpBadRequestError: HttpError accessing <https://dataflow.googleapis.com/v1b3/projects/apache-beam-testing/locations/us-central1/jobs?alt=json>: response: <{'vary': 'Origin, X-Origin, Referer', 'content-type': 'application/json; charset=UTF-8', 'date': 'Wed, 05 Feb 2025 18:11:12 GMT', 'server': 'ESF', 'x-xss-protection': '0', 'x-frame-options': 'SAMEORIGIN', 'x-content-type-options': 'nosniff', 'transfer-encoding': 'chunked', 'status': '400', 'content-length': '491', '-content-encoding': 'gzip'}>, content <{
E "error": {
E "code": 400,
E "message": "(ee0a15594bfa4c23): The workflow could not be created. Causes: (8525f2a8d802af5): Dataflow quota error for jobs-per-project quota. Project apache-beam-testing is running 299 jobs. Please check the quota usage via GCP Console. If it exceeds the limit, please wait for a workflow to finish or contact Google Cloud Support to request an increase in quota. If it does not, contact Google Cloud Support.",
E "status": "FAILED_PRECONDITION"
E }
E }
E >
../../build/gradleenv/2050596099/lib/python3.11/site-packages/apitools/base/py/base_api.py:603: HttpBadRequestError
Check warning on line 0 in apache_beam.examples.wordcount_it_test.WordCountIT
github-actions / Test Results
test_wordcount_it_with_prebuilt_sdk_container_cloud_build (apache_beam.examples.wordcount_it_test.WordCountIT) failed
sdks/python/pytest-beam_python3.11_sdk.xml [took 20m 51s]
Raw output
apache_beam.runners.dataflow.dataflow_runner.DataflowRuntimeException: Dataflow pipeline failed. State: FAILED, Error:
Workflow failed.
self = <apache_beam.examples.wordcount_it_test.WordCountIT testMethod=test_wordcount_it_with_prebuilt_sdk_container_cloud_build>
@pytest.mark.it_validatescontainer
def test_wordcount_it_with_prebuilt_sdk_container_cloud_build(self):
> self._run_wordcount_it(
wordcount.run,
experiment='beam_fn_api',
prebuild_sdk_container_engine='cloud_build')
apache_beam/examples/wordcount_it_test.py:102:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
apache_beam/examples/wordcount_it_test.py:150: in _run_wordcount_it
run_wordcount(
apache_beam/examples/wordcount.py:109: in run
result = pipeline.run()
apache_beam/pipeline.py:594: in run
self._options).run(False)
apache_beam/pipeline.py:618: in run
return self.runner.run_pipeline(self, self._options)
apache_beam/runners/dataflow/test_dataflow_runner.py:66: in run_pipeline
self.result.wait_until_finish(duration=wait_duration)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <DataflowPipelineResult <Job
clientRequestId: '20250205181407638982-2424'
createTime: '2025-02-05T18:14:08.855364Z'
...025-02-05T18:14:08.855364Z'
steps: []
tempFiles: []
type: TypeValueValuesEnum(JOB_TYPE_BATCH, 1)> at 0x7c4833af06d0>
duration = None
def wait_until_finish(self, duration=None):
if not self.is_in_terminal_state():
if not self.has_job:
raise IOError('Failed to get the Dataflow job id.')
consoleUrl = (
"Console URL: https://console.cloud.google.com/"
f"dataflow/jobs/<RegionId>/{self.job_id()}"
"?project=<ProjectId>")
thread = threading.Thread(
target=DataflowRunner.poll_for_job_completion,
args=(self._runner, self, duration))
# Mark the thread as a daemon thread so a keyboard interrupt on the main
# thread will terminate everything. This is also the reason we will not
# use thread.join() to wait for the polling thread.
thread.daemon = True
thread.start()
while thread.is_alive():
time.sleep(5.0)
# TODO: Merge the termination code in poll_for_job_completion and
# is_in_terminal_state.
terminated = self.is_in_terminal_state()
assert duration or terminated, (
'Job did not reach to a terminal state after waiting indefinitely. '
'{}'.format(consoleUrl))
if terminated and self.state != PipelineState.DONE:
# TODO(BEAM-1290): Consider converting this to an error log based on
# theresolution of the issue.
_LOGGER.error(consoleUrl)
> raise DataflowRuntimeException(
'Dataflow pipeline failed. State: %s, Error:\n%s' %
(self.state, getattr(self._runner, 'last_error_msg', None)),
E apache_beam.runners.dataflow.dataflow_runner.DataflowRuntimeException: Dataflow pipeline failed. State: FAILED, Error:
E Workflow failed.
apache_beam/runners/dataflow/dataflow_runner.py:807: DataflowRuntimeException
Loading