Skip to content

[Feature] Support Spark expression: seconds_to_timestamp #3111

@andygrove

Description

@andygrove

What is the problem the feature request solves?

Note: This issue was generated with AI assistance. The specification details have been extracted from Spark documentation and may need verification.

Comet does not currently support the Spark seconds_to_timestamp function, causing queries using this function to fall back to Spark's JVM execution instead of running natively on DataFusion.

The SecondsToTimestamp expression converts numeric values representing seconds since Unix epoch (1970-01-01 00:00:00 UTC) into timestamp values. It supports various numeric data types and handles the conversion by multiplying the input value by the number of microseconds per second to produce a timestamp in Spark's internal microsecond representation.

Supporting this expression would allow more Spark workloads to benefit from Comet's native acceleration.

Describe the potential solution

Spark Specification

Syntax:

timestamp_seconds(seconds)
// DataFrame API
import org.apache.spark.sql.functions._
col("seconds_column").cast(TimestampType)
// or using the function name
expr("timestamp_seconds(seconds_column)")

Arguments:

Argument Type Description
seconds Numeric The number of seconds since Unix epoch (1970-01-01 00:00:00 UTC) to convert to timestamp

Return Type: TimestampType - Returns a timestamp value representing the specified number of seconds since Unix epoch.

Supported Data Types:

  • IntegralType (Byte, Short, Integer, Long)
  • DecimalType
  • FloatType
  • DoubleType

Edge Cases:

  • Null handling: Expression is null-intolerant, meaning null inputs produce null outputs
  • Float/Double special values: NaN and Infinite values in float/double inputs return null instead of throwing exceptions
  • Overflow protection: Integral types use Math.multiplyExact() and decimal types use longValueExact() to detect arithmetic overflow
  • Precision handling: Decimal inputs maintain precision through BigDecimal arithmetic before final conversion
  • Nullable behavior: Float and Double inputs make the result nullable due to potential NaN/Infinite handling; other numeric types inherit nullability from the child expression

Examples:

-- Convert integer seconds to timestamp
SELECT timestamp_seconds(1640995200) as converted_timestamp;
-- Result: 2021-12-31 16:00:00

-- Convert decimal seconds to timestamp  
SELECT timestamp_seconds(1640995200.123) as converted_timestamp;
-- Result: 2021-12-31 16:00:00.123

-- Handle null input
SELECT timestamp_seconds(null) as converted_timestamp;
-- Result: null
// DataFrame API usage
import org.apache.spark.sql.functions._

// Convert seconds column to timestamp
df.select(expr("timestamp_seconds(epoch_seconds)").as("converted_timestamp"))

// Using with literal values
df.select(expr("timestamp_seconds(1640995200)").as("converted_timestamp"))

// Handle floating point seconds
df.select(expr("timestamp_seconds(1640995200.123)").as("converted_timestamp"))

Implementation Approach

See the Comet guide on adding new expressions for detailed instructions.

  1. Scala Serde: Add expression handler in spark/src/main/scala/org/apache/comet/serde/
  2. Register: Add to appropriate map in QueryPlanSerde.scala
  3. Protobuf: Add message type in native/proto/src/proto/expr.proto if needed
  4. Rust: Implement in native/spark-expr/src/ (check if DataFusion has built-in support first)

Additional context

Difficulty: Medium
Spark Expression Class: org.apache.spark.sql.catalyst.expressions.SecondsToTimestamp

Related:

  • TimestampToSeconds - Converts timestamps back to seconds since epoch
  • UnixTimestamp - Similar functionality with different precision handling
  • FromUnixTime - Converts Unix timestamp to formatted string
  • ToTimestamp - Converts string to timestamp with format parsing

This issue was auto-generated from Spark reference documentation.

Metadata

Metadata

Assignees

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions