Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

tests: Move random data generation methods from CometCastSuite to new DataGenerator class #426

Merged
merged 5 commits into from
May 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions docs/source/user-guide/compatibility.md
Original file line number Diff line number Diff line change
Expand Up @@ -110,10 +110,6 @@ The following cast operations are generally compatible with Spark except for the
| decimal | float | |
| decimal | double | |
| string | boolean | |
| string | byte | |
| string | short | |
| string | integer | |
| string | long | |
| string | binary | |
| date | string | |
| timestamp | long | |
Expand All @@ -129,6 +125,10 @@ The following cast operations are not compatible with Spark for all inputs and a
|-|-|-|
| integer | decimal | No overflow check |
| long | decimal | No overflow check |
| string | byte | Not all invalid inputs are detected |
| string | short | Not all invalid inputs are detected |
| string | integer | Not all invalid inputs are detected |
| string | long | Not all invalid inputs are detected |
| string | timestamp | Not all valid formats are supported |
| binary | string | Only works for binary data representing valid UTF-8 strings |

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -108,7 +108,7 @@ object CometCast {
Compatible()
case DataTypes.ByteType | DataTypes.ShortType | DataTypes.IntegerType |
DataTypes.LongType =>
Compatible()
Incompatible(Some("Not all invalid inputs are detected"))
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I filed #431 to fix this

case DataTypes.BinaryType =>
Compatible()
case DataTypes.FloatType | DataTypes.DoubleType =>
Expand Down
122 changes: 30 additions & 92 deletions spark/src/test/scala/org/apache/comet/CometCastSuite.scala
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,11 @@ import org.apache.comet.expressions.{CometCast, Compatible}
class CometCastSuite extends CometTestBase with AdaptiveSparkPlanHelper {
import testImplicits._

private val dataSize = 1000
/** Create a data generator using a fixed seed so that tests are reproducible */
private val gen = DataGenerator.DEFAULT

/** Number of random data items to generate in each test */
private val dataSize = 10000
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

So the size is increased 10x?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes. At 1000 I saw string -> short fail, but not the other string -> integer tests. When I increased this to 10000 then all of the string -> integer tests failed, so seems like we get better coverage at this level


// we should eventually add more whitespace chars here as documented in
// https://docs.oracle.com/javase/8/docs/api/java/lang/Character.html#isWhitespace-char-
Expand Down Expand Up @@ -478,7 +482,7 @@ class CometCastSuite extends CometTestBase with AdaptiveSparkPlanHelper {
test("cast StringType to BooleanType") {
val testValues =
(Seq("TRUE", "True", "true", "FALSE", "False", "false", "1", "0", "", null) ++
generateStrings("truefalseTRUEFALSEyesno10" + whitespaceChars, 8)).toDF("a")
gen.generateStrings(dataSize, "truefalseTRUEFALSEyesno10" + whitespaceChars, 8)).toDF("a")
castTest(testValues, DataTypes.BooleanType)
}

Expand Down Expand Up @@ -515,57 +519,57 @@ class CometCastSuite extends CometTestBase with AdaptiveSparkPlanHelper {
"9223372036854775808" // Long.MaxValue + 1
)

test("cast StringType to ByteType") {
ignore("cast StringType to ByteType") {
// test with hand-picked values
castTest(castStringToIntegralInputs.toDF("a"), DataTypes.ByteType)
// fuzz test
castTest(generateStrings(numericPattern, 4).toDF("a"), DataTypes.ByteType)
castTest(gen.generateStrings(dataSize, numericPattern, 4).toDF("a"), DataTypes.ByteType)
}

test("cast StringType to ShortType") {
ignore("cast StringType to ShortType") {
// test with hand-picked values
castTest(castStringToIntegralInputs.toDF("a"), DataTypes.ShortType)
// fuzz test
castTest(generateStrings(numericPattern, 5).toDF("a"), DataTypes.ShortType)
castTest(gen.generateStrings(dataSize, numericPattern, 5).toDF("a"), DataTypes.ShortType)
}

test("cast StringType to IntegerType") {
ignore("cast StringType to IntegerType") {
// test with hand-picked values
castTest(castStringToIntegralInputs.toDF("a"), DataTypes.IntegerType)
// fuzz test
castTest(generateStrings(numericPattern, 8).toDF("a"), DataTypes.IntegerType)
castTest(gen.generateStrings(dataSize, numericPattern, 8).toDF("a"), DataTypes.IntegerType)
}

test("cast StringType to LongType") {
ignore("cast StringType to LongType") {
// test with hand-picked values
castTest(castStringToIntegralInputs.toDF("a"), DataTypes.LongType)
// fuzz test
castTest(generateStrings(numericPattern, 8).toDF("a"), DataTypes.LongType)
castTest(gen.generateStrings(dataSize, numericPattern, 8).toDF("a"), DataTypes.LongType)
}

ignore("cast StringType to FloatType") {
// https://github.com/apache/datafusion-comet/issues/326
castTest(generateStrings(numericPattern, 8).toDF("a"), DataTypes.FloatType)
castTest(gen.generateStrings(dataSize, numericPattern, 8).toDF("a"), DataTypes.FloatType)
}

ignore("cast StringType to DoubleType") {
// https://github.com/apache/datafusion-comet/issues/326
castTest(generateStrings(numericPattern, 8).toDF("a"), DataTypes.DoubleType)
castTest(gen.generateStrings(dataSize, numericPattern, 8).toDF("a"), DataTypes.DoubleType)
}

ignore("cast StringType to DecimalType(10,2)") {
// https://github.com/apache/datafusion-comet/issues/325
val values = generateStrings(numericPattern, 8).toDF("a")
val values = gen.generateStrings(dataSize, numericPattern, 8).toDF("a")
castTest(values, DataTypes.createDecimalType(10, 2))
}

test("cast StringType to BinaryType") {
castTest(generateStrings(numericPattern, 8).toDF("a"), DataTypes.BinaryType)
castTest(gen.generateStrings(dataSize, numericPattern, 8).toDF("a"), DataTypes.BinaryType)
}

ignore("cast StringType to DateType") {
// https://github.com/apache/datafusion-comet/issues/327
castTest(generateStrings(datePattern, 8).toDF("a"), DataTypes.DateType)
castTest(gen.generateStrings(dataSize, datePattern, 8).toDF("a"), DataTypes.DateType)
}

test("cast StringType to TimestampType disabled by default") {
Expand All @@ -581,7 +585,10 @@ class CometCastSuite extends CometTestBase with AdaptiveSparkPlanHelper {
ignore("cast StringType to TimestampType") {
// https://github.com/apache/datafusion-comet/issues/328
withSQLConf((CometConf.COMET_CAST_ALLOW_INCOMPATIBLE.key, "true")) {
val values = Seq("2020-01-01T12:34:56.123456", "T2") ++ generateStrings(timestampPattern, 8)
val values = Seq("2020-01-01T12:34:56.123456", "T2") ++ gen.generateStrings(
dataSize,
timestampPattern,
8)
castTest(values.toDF("a"), DataTypes.TimestampType)
}
}
Expand Down Expand Up @@ -630,7 +637,7 @@ class CometCastSuite extends CometTestBase with AdaptiveSparkPlanHelper {
}

test("cast BinaryType to StringType - valid UTF-8 inputs") {
castTest(generateStrings(numericPattern, 8).toDF("a"), DataTypes.StringType)
castTest(gen.generateStrings(dataSize, numericPattern, 8).toDF("a"), DataTypes.StringType)
}

// CAST from DateType
Expand Down Expand Up @@ -739,67 +746,31 @@ class CometCastSuite extends CometTestBase with AdaptiveSparkPlanHelper {
}

private def generateFloats(): DataFrame = {
val r = new Random(0)
val values = Seq(
Float.MaxValue,
Float.MinPositiveValue,
Float.MinValue,
Float.NaN,
Float.PositiveInfinity,
Float.NegativeInfinity,
1.0f,
-1.0f,
Short.MinValue.toFloat,
Short.MaxValue.toFloat,
0.0f) ++
Range(0, dataSize).map(_ => r.nextFloat())
withNulls(values).toDF("a")
withNulls(gen.generateFloats(dataSize)).toDF("a")
}

private def generateDoubles(): DataFrame = {
val r = new Random(0)
val values = Seq(
Double.MaxValue,
Double.MinPositiveValue,
Double.MinValue,
Double.NaN,
Double.PositiveInfinity,
Double.NegativeInfinity,
0.0d) ++
Range(0, dataSize).map(_ => r.nextDouble())
withNulls(values).toDF("a")
withNulls(gen.generateDoubles(dataSize)).toDF("a")
}

private def generateBools(): DataFrame = {
withNulls(Seq(true, false)).toDF("a")
}

private def generateBytes(): DataFrame = {
val r = new Random(0)
val values = Seq(Byte.MinValue, Byte.MaxValue) ++
Range(0, dataSize).map(_ => r.nextInt().toByte)
withNulls(values).toDF("a")
withNulls(gen.generateBytes(dataSize)).toDF("a")
}

private def generateShorts(): DataFrame = {
val r = new Random(0)
val values = Seq(Short.MinValue, Short.MaxValue) ++
Range(0, dataSize).map(_ => r.nextInt().toShort)
withNulls(values).toDF("a")
withNulls(gen.generateShorts(dataSize)).toDF("a")
}

private def generateInts(): DataFrame = {
val r = new Random(0)
val values = Seq(Int.MinValue, Int.MaxValue) ++
Range(0, dataSize).map(_ => r.nextInt())
withNulls(values).toDF("a")
withNulls(gen.generateInts(dataSize)).toDF("a")
}

private def generateLongs(): DataFrame = {
val r = new Random(0)
val values = Seq(Long.MinValue, Long.MaxValue) ++
Range(0, dataSize).map(_ => r.nextLong())
withNulls(values).toDF("a")
withNulls(gen.generateLongs(dataSize)).toDF("a")
}

private def generateDecimalsPrecision10Scale2(): DataFrame = {
Expand Down Expand Up @@ -864,17 +835,6 @@ class CometCastSuite extends CometTestBase with AdaptiveSparkPlanHelper {
.drop("str")
}

private def generateString(r: Random, chars: String, maxLen: Int): String = {
val len = r.nextInt(maxLen)
Range(0, len).map(_ => chars.charAt(r.nextInt(chars.length))).mkString
}

// TODO return DataFrame for consistency with other generators and include null values
private def generateStrings(chars: String, maxLen: Int): Seq[String] = {
val r = new Random(0)
Range(0, dataSize).map(_ => generateString(r, chars, maxLen))
}

private def generateBinary(): DataFrame = {
val r = new Random(0)
val bytes = new Array[Byte](8)
Expand Down Expand Up @@ -907,28 +867,6 @@ class CometCastSuite extends CometTestBase with AdaptiveSparkPlanHelper {
}
}

// TODO Commented out to work around scalafix since this is currently unused.
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Removing this commented out code since it is no longer needed

// private def castFallbackTestTimezone(
// input: DataFrame,
// toType: DataType,
// expectedMessage: String): Unit = {
// withTempPath { dir =>
// val data = roundtripParquet(input, dir).coalesce(1)
// data.createOrReplaceTempView("t")
//
// withSQLConf(
// (SQLConf.ANSI_ENABLED.key, "false"),
// (CometConf.COMET_CAST_ALLOW_INCOMPATIBLE.key, "true"),
// (SQLConf.SESSION_LOCAL_TIMEZONE.key, "America/Los_Angeles")) {
// val df = data.withColumn("converted", col("a").cast(toType))
// df.collect()
// val str =
// new ExtendedExplainInfo().generateExtendedInfo(df.queryExecution.executedPlan)
// assert(str.contains(expectedMessage))
// }
// }
// }

private def castTimestampTest(input: DataFrame, toType: DataType) = {
withTempPath { dir =>
val data = roundtripParquet(input, dir).coalesce(1)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -942,7 +942,9 @@ class CometExpressionSuite extends CometTestBase with AdaptiveSparkPlanHelper {

test("Chr") {
Seq(false, true).foreach { dictionary =>
withSQLConf("parquet.enable.dictionary" -> dictionary.toString) {
withSQLConf(
"parquet.enable.dictionary" -> dictionary.toString,
CometConf.COMET_CAST_ALLOW_INCOMPATIBLE.key -> "true") {
val table = "test"
withTable(table) {
sql(s"create table $table(col varchar(20)) using parquet")
Expand Down
98 changes: 98 additions & 0 deletions spark/src/test/scala/org/apache/comet/DataGenerator.scala
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

package org.apache.comet

import scala.util.Random

object DataGenerator {
// note that we use `def` rather than `val` intentionally here so that
// each test suite starts with a fresh data generator to help ensure
// that tests are deterministic
def DEFAULT = new DataGenerator(new Random(42))
}

class DataGenerator(r: Random) {

/** Generate a random string using the specified characters */
def generateString(chars: String, maxLen: Int): String = {
val len = r.nextInt(maxLen)
Range(0, len).map(_ => chars.charAt(r.nextInt(chars.length))).mkString
}

/** Generate random strings */
def generateStrings(n: Int, maxLen: Int): Seq[String] = {
Range(0, n).map(_ => r.nextString(maxLen))
}

/** Generate random strings using the specified characters */
def generateStrings(n: Int, chars: String, maxLen: Int): Seq[String] = {
Range(0, n).map(_ => generateString(chars, maxLen))
}

def generateFloats(n: Int): Seq[Float] = {
Seq(
Float.MaxValue,
Float.MinPositiveValue,
Float.MinValue,
Float.NaN,
Float.PositiveInfinity,
Float.NegativeInfinity,
1.0f,
-1.0f,
Short.MinValue.toFloat,
Short.MaxValue.toFloat,
0.0f) ++
Range(0, n).map(_ => r.nextFloat())
}

def generateDoubles(n: Int): Seq[Double] = {
Seq(
Double.MaxValue,
Double.MinPositiveValue,
Double.MinValue,
Double.NaN,
Double.PositiveInfinity,
Double.NegativeInfinity,
0.0d) ++
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should we cover

      1.0d,
       -1.0d,
       Int.MinValue.toDouble,
       Int.MaxValue.toDouble,
       0.0d,
       -0.0d

?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

+1. But I think it could be addressed in a follow-up pr.

Range(0, n).map(_ => r.nextDouble())
}

def generateBytes(n: Int): Seq[Byte] = {
Seq(Byte.MinValue, Byte.MaxValue) ++
Range(0, n).map(_ => r.nextInt().toByte)
}

def generateShorts(n: Int): Seq[Short] = {
val r = new Random(0)
Seq(Short.MinValue, Short.MaxValue) ++
Range(0, n).map(_ => r.nextInt().toShort)
}

def generateInts(n: Int): Seq[Int] = {
Seq(Int.MinValue, Int.MaxValue) ++
Range(0, n).map(_ => r.nextInt())
}

def generateLongs(n: Int): Seq[Long] = {
Seq(Long.MinValue, Long.MaxValue) ++
Range(0, n).map(_ => r.nextLong())
}

}
Loading