Skip to content

Commit

Permalink
fix clippy
Browse files Browse the repository at this point in the history
  • Loading branch information
Jiayu Liu authored and jimexist committed Jun 27, 2021
1 parent 27dc5d6 commit b07b203
Show file tree
Hide file tree
Showing 6 changed files with 315 additions and 64 deletions.
2 changes: 2 additions & 0 deletions datafusion/src/physical_plan/expressions/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@ mod negative;
mod not;
mod nth_value;
mod nullif;
mod rank;
mod row_number;
mod sum;
mod try_cast;
Expand All @@ -63,6 +64,7 @@ pub use negative::{negative, NegativeExpr};
pub use not::{not, NotExpr};
pub use nth_value::NthValue;
pub use nullif::{nullif_func, SUPPORTED_NULLIF_TYPES};
pub use rank::{dense_rank, rank};
pub use row_number::RowNumber;
pub use sum::{sum_return_type, Sum};
pub use try_cast::{try_cast, TryCastExpr};
Expand Down
59 changes: 36 additions & 23 deletions datafusion/src/physical_plan/expressions/nth_value.rs
Original file line number Diff line number Diff line change
Expand Up @@ -18,11 +18,14 @@
//! Defines physical expressions that can evaluated at runtime during query execution
use crate::error::{DataFusionError, Result};
use crate::physical_plan::window_functions::PartitionEvaluator;
use crate::physical_plan::{window_functions::BuiltInWindowFunctionExpr, PhysicalExpr};
use crate::scalar::ScalarValue;
use arrow::array::{new_empty_array, new_null_array, ArrayRef};
use arrow::array::{new_null_array, ArrayRef};
use arrow::datatypes::{DataType, Field};
use arrow::record_batch::RecordBatch;
use std::any::Any;
use std::ops::Range;
use std::sync::Arc;

/// nth_value kind
Expand Down Expand Up @@ -111,25 +114,34 @@ impl BuiltInWindowFunctionExpr for NthValue {
&self.name
}

fn evaluate(&self, num_rows: usize, values: &[ArrayRef]) -> Result<ArrayRef> {
if values.is_empty() {
return Err(DataFusionError::Execution(format!(
"No arguments supplied to {}",
self.name()
)));
}
let value = &values[0];
if value.len() != num_rows {
return Err(DataFusionError::Execution(format!(
"Invalid data supplied to {}, expect {} rows, got {} rows",
self.name(),
num_rows,
value.len()
)));
}
if num_rows == 0 {
return Ok(new_empty_array(value.data_type()));
}
fn create_evaluator(
&self,
batch: &RecordBatch,
) -> Result<Box<dyn PartitionEvaluator>> {
let values = self
.expressions()
.iter()
.map(|e| e.evaluate(batch))
.map(|r| r.map(|v| v.into_array(batch.num_rows())))
.collect::<Result<Vec<_>>>()?;
Ok(Box::new(NthValueEvaluator {
kind: self.kind,
values,
}))
}
}

/// Value evaluator for nth_value functions
pub(crate) struct NthValueEvaluator {
kind: NthValueKind,
values: Vec<ArrayRef>,
}

impl PartitionEvaluator for NthValueEvaluator {
fn evaluate_partition(&self, partition: Range<usize>) -> Result<ArrayRef> {
let value = &self.values[0];
let num_rows = partition.end - partition.start;
let value = value.slice(partition.start, num_rows);
let index: usize = match self.kind {
NthValueKind::First => 0,
NthValueKind::Last => (num_rows as usize) - 1,
Expand All @@ -138,7 +150,7 @@ impl BuiltInWindowFunctionExpr for NthValue {
Ok(if index >= num_rows {
new_null_array(value.data_type(), num_rows)
} else {
let value = ScalarValue::try_from_array(value, index)?;
let value = ScalarValue::try_from_array(&value, index)?;
value.to_array_of_size(num_rows)
})
}
Expand All @@ -157,8 +169,9 @@ mod tests {
let values = vec![arr];
let schema = Schema::new(vec![Field::new("arr", DataType::Int32, false)]);
let batch = RecordBatch::try_new(Arc::new(schema), values.clone())?;
let result = expr.evaluate(batch.num_rows(), &values)?;
let result = result.as_any().downcast_ref::<Int32Array>().unwrap();
let result = expr.create_evaluator(&batch)?.evaluate(vec![0..8])?;
assert_eq!(1, result.len());
let result = result[0].as_any().downcast_ref::<Int32Array>().unwrap();
let result = result.values();
assert_eq!(expected, result);
Ok(())
Expand Down
172 changes: 172 additions & 0 deletions datafusion/src/physical_plan/expressions/rank.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines physical expressions that can evaluated at runtime during query execution
use crate::error::Result;
use crate::physical_plan::window_functions::PartitionEvaluator;
use crate::physical_plan::{window_functions::BuiltInWindowFunctionExpr, PhysicalExpr};
use arrow::array::ArrayRef;
use arrow::array::UInt64Array;
use arrow::datatypes::{DataType, Field};
use arrow::record_batch::RecordBatch;
use std::any::Any;
use std::iter;
use std::ops::Range;
use std::sync::Arc;

/// Rank calculates the rank in the window function with order by
#[derive(Debug)]
pub struct Rank {
name: String,
dense: bool,
}

/// Create a rank window function
pub fn rank(name: String) -> Rank {
Rank { name, dense: false }
}

/// Create a dense rank window function
pub fn dense_rank(name: String) -> Rank {
Rank { name, dense: true }
}

impl BuiltInWindowFunctionExpr for Rank {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}

fn field(&self) -> Result<Field> {
let nullable = false;
let data_type = DataType::UInt64;
Ok(Field::new(self.name(), data_type, nullable))
}

fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![]
}

fn name(&self) -> &str {
&self.name
}

fn create_evaluator(
&self,
_batch: &RecordBatch,
) -> Result<Box<dyn PartitionEvaluator>> {
Ok(Box::new(RankEvaluator { dense: self.dense }))
}
}

pub(crate) struct RankEvaluator {
dense: bool,
}

impl PartitionEvaluator for RankEvaluator {
fn include_rank(&self) -> bool {
true
}

fn evaluate_partition(&self, _partition: Range<usize>) -> Result<ArrayRef> {
unreachable!("rank evaluation must be called with evaluate_partition_with_rank")
}

fn evaluate_partition_with_rank(
&self,
_partition: Range<usize>,
ranks_in_partition: &[Range<usize>],
) -> Result<ArrayRef> {
let result = if self.dense {
UInt64Array::from_iter_values(ranks_in_partition.iter().enumerate().flat_map(
|(index, range)| {
let len = range.end - range.start;
iter::repeat((index as u64) + 1).take(len)
},
))
} else {
UInt64Array::from_iter_values(
ranks_in_partition
.iter()
.scan(0_u64, |acc, range| {
let len = range.end - range.start;
let result = iter::repeat(*acc + 1).take(len);
*acc += len as u64;
Some(result)
})
.flatten(),
)
};
Ok(Arc::new(result))
}
}

#[cfg(test)]
mod tests {
use super::*;
use arrow::{array::*, datatypes::*};

fn test_with_rank(expr: &Rank, expected: Vec<u64>) -> Result<()> {
test_i32_result(
expr,
vec![-2, -2, 1, 3, 3, 3, 7, 8],
vec![0..2, 2..3, 3..6, 6..7, 7..8],
expected,
)
}

fn test_without_rank(expr: &Rank, expected: Vec<u64>) -> Result<()> {
test_i32_result(expr, vec![-2, -2, 1, 3, 3, 3, 7, 8], vec![0..8], expected)
}

fn test_i32_result(
expr: &Rank,
data: Vec<i32>,
ranks: Vec<Range<usize>>,
expected: Vec<u64>,
) -> Result<()> {
let arr: ArrayRef = Arc::new(Int32Array::from(data));
let values = vec![arr];
let schema = Schema::new(vec![Field::new("arr", DataType::Int32, false)]);
let batch = RecordBatch::try_new(Arc::new(schema), values.clone())?;
let result = expr
.create_evaluator(&batch)?
.evaluate_with_rank(vec![0..8], ranks)?;
assert_eq!(1, result.len());
let result = result[0].as_any().downcast_ref::<UInt64Array>().unwrap();
let result = result.values();
assert_eq!(expected, result);
Ok(())
}

#[test]
fn test_dense_rank() -> Result<()> {
let r = dense_rank("arr".into());
test_without_rank(&r, vec![1; 8])?;
test_with_rank(&r, vec![1, 1, 2, 3, 3, 3, 4, 5])?;
Ok(())
}

#[test]
fn test_rank() -> Result<()> {
let r = rank("arr".into());
test_without_rank(&r, vec![1; 8])?;
test_with_rank(&r, vec![1, 1, 3, 4, 4, 4, 7, 8])?;
Ok(())
}
}
32 changes: 25 additions & 7 deletions datafusion/src/physical_plan/expressions/row_number.rs
Original file line number Diff line number Diff line change
Expand Up @@ -18,10 +18,13 @@
//! Defines physical expression for `row_number` that can evaluated at runtime during query execution
use crate::error::Result;
use crate::physical_plan::window_functions::PartitionEvaluator;
use crate::physical_plan::{window_functions::BuiltInWindowFunctionExpr, PhysicalExpr};
use arrow::array::{ArrayRef, UInt64Array};
use arrow::datatypes::{DataType, Field};
use arrow::record_batch::RecordBatch;
use std::any::Any;
use std::ops::Range;
use std::sync::Arc;

/// row_number expression
Expand Down Expand Up @@ -54,12 +57,25 @@ impl BuiltInWindowFunctionExpr for RowNumber {
}

fn name(&self) -> &str {
self.name.as_str()
&self.name
}

fn evaluate(&self, num_rows: usize, _values: &[ArrayRef]) -> Result<ArrayRef> {
fn create_evaluator(
&self,
_batch: &RecordBatch,
) -> Result<Box<dyn PartitionEvaluator>> {
Ok(Box::new(NumRowsEvaluator::default()))
}
}

#[derive(Default)]
pub(crate) struct NumRowsEvaluator {}

impl PartitionEvaluator for NumRowsEvaluator {
fn evaluate_partition(&self, partition: Range<usize>) -> Result<ArrayRef> {
let num_rows = partition.end - partition.start;
Ok(Arc::new(UInt64Array::from_iter_values(
(1..num_rows + 1).map(|i| i as u64),
1..(num_rows as u64) + 1,
)))
}
}
Expand All @@ -79,8 +95,9 @@ mod tests {
let schema = Schema::new(vec![Field::new("arr", DataType::Boolean, false)]);
let batch = RecordBatch::try_new(Arc::new(schema), vec![arr])?;
let row_number = RowNumber::new("row_number".to_owned());
let result = row_number.evaluate(batch.num_rows(), &[])?;
let result = result.as_any().downcast_ref::<UInt64Array>().unwrap();
let result = row_number.create_evaluator(&batch)?.evaluate(vec![0..8])?;
assert_eq!(1, result.len());
let result = result[0].as_any().downcast_ref::<UInt64Array>().unwrap();
let result = result.values();
assert_eq!(vec![1, 2, 3, 4, 5, 6, 7, 8], result);
Ok(())
Expand All @@ -94,8 +111,9 @@ mod tests {
let schema = Schema::new(vec![Field::new("arr", DataType::Boolean, false)]);
let batch = RecordBatch::try_new(Arc::new(schema), vec![arr])?;
let row_number = RowNumber::new("row_number".to_owned());
let result = row_number.evaluate(batch.num_rows(), &[])?;
let result = result.as_any().downcast_ref::<UInt64Array>().unwrap();
let result = row_number.create_evaluator(&batch)?.evaluate(vec![0..8])?;
assert_eq!(1, result.len());
let result = result[0].as_any().downcast_ref::<UInt64Array>().unwrap();
let result = result.values();
assert_eq!(vec![1, 2, 3, 4, 5, 6, 7, 8], result);
Ok(())
Expand Down
Loading

0 comments on commit b07b203

Please sign in to comment.