-
Notifications
You must be signed in to change notification settings - Fork 1.2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
test: add more tests for statistics reading #10592
Merged
Merged
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -22,8 +22,8 @@ use std::fs::File; | |
use std::sync::Arc; | ||
|
||
use arrow_array::{ | ||
make_array, Array, ArrayRef, Int16Array, Int32Array, Int64Array, Int8Array, | ||
RecordBatch, UInt64Array, | ||
make_array, Array, ArrayRef, Decimal128Array, FixedSizeBinaryArray, Float64Array, | ||
Int16Array, Int32Array, Int64Array, Int8Array, RecordBatch, StringArray, UInt64Array, | ||
}; | ||
use arrow_schema::{DataType, Field, Schema}; | ||
use datafusion::datasource::physical_plan::parquet::{ | ||
|
@@ -624,20 +624,281 @@ async fn test_dates_64_diff_rg_sizes() { | |
.run("date64"); | ||
} | ||
|
||
// BUG: | ||
// https://github.com/apache/datafusion/issues/10604 | ||
#[tokio::test] | ||
async fn test_uint() { | ||
let row_per_group = 4; | ||
|
||
// This creates a parquet files of 4 columns named "u8", "u16", "u32", "u64" | ||
// "u8" --> UInt8Array | ||
// "u16" --> UInt16Array | ||
// "u32" --> UInt32Array | ||
// "u64" --> UInt64Array | ||
|
||
// The file is created by 4 record batches (each has a null row), each has 5 rows but then will be split into 5 row groups with size 4 | ||
let reader = parquet_file_many_columns(Scenario::UInt, row_per_group).await; | ||
|
||
// u8 | ||
// BUG: expect UInt8Array but returns Int32Array | ||
Test { | ||
reader, | ||
expected_min: Arc::new(Int32Array::from(vec![0, 1, 4, 7, 251])), // shoudld be UInt8Array | ||
expected_max: Arc::new(Int32Array::from(vec![3, 4, 6, 250, 254])), // shoudld be UInt8Array | ||
expected_null_counts: UInt64Array::from(vec![0, 0, 0, 0, 0]), | ||
expected_row_counts: UInt64Array::from(vec![4, 4, 4, 4, 4]), | ||
} | ||
.run("u8"); | ||
|
||
// u16 | ||
// BUG: expect UInt16Array but returns Int32Array | ||
let reader = parquet_file_many_columns(Scenario::UInt, row_per_group).await; | ||
Test { | ||
reader, | ||
expected_min: Arc::new(Int32Array::from(vec![0, 1, 4, 7, 251])), // shoudld be UInt16Array | ||
expected_max: Arc::new(Int32Array::from(vec![3, 4, 6, 250, 254])), // shoudld be UInt16Array | ||
expected_null_counts: UInt64Array::from(vec![0, 0, 0, 0, 0]), | ||
expected_row_counts: UInt64Array::from(vec![4, 4, 4, 4, 4]), | ||
} | ||
.run("u16"); | ||
|
||
// u32 | ||
// BUG: expect UInt32Array but returns Int32Array | ||
let reader = parquet_file_many_columns(Scenario::UInt, row_per_group).await; | ||
Test { | ||
reader, | ||
expected_min: Arc::new(Int32Array::from(vec![0, 1, 4, 7, 251])), // shoudld be UInt32Array | ||
expected_max: Arc::new(Int32Array::from(vec![3, 4, 6, 250, 254])), // shoudld be UInt32Array | ||
expected_null_counts: UInt64Array::from(vec![0, 0, 0, 0, 0]), | ||
expected_row_counts: UInt64Array::from(vec![4, 4, 4, 4, 4]), | ||
} | ||
.run("u32"); | ||
|
||
// u64 | ||
// BUG: expect UInt64rray but returns Int64Array | ||
let reader = parquet_file_many_columns(Scenario::UInt, row_per_group).await; | ||
Test { | ||
reader, | ||
expected_min: Arc::new(Int64Array::from(vec![0, 1, 4, 7, 251])), // shoudld be UInt64Array | ||
expected_max: Arc::new(Int64Array::from(vec![3, 4, 6, 250, 254])), // shoudld be UInt64Array | ||
expected_null_counts: UInt64Array::from(vec![0, 0, 0, 0, 0]), | ||
expected_row_counts: UInt64Array::from(vec![4, 4, 4, 4, 4]), | ||
} | ||
.run("u64"); | ||
} | ||
|
||
#[tokio::test] | ||
async fn test_int32_range() { | ||
let row_per_group = 5; | ||
// This creates a parquet file of 1 column "i" | ||
// file has 2 record batches, each has 2 rows. They will be saved into one row group | ||
let reader = parquet_file_many_columns(Scenario::Int32Range, row_per_group).await; | ||
|
||
Test { | ||
reader, | ||
expected_min: Arc::new(Int32Array::from(vec![0])), | ||
expected_max: Arc::new(Int32Array::from(vec![300000])), | ||
expected_null_counts: UInt64Array::from(vec![0]), | ||
expected_row_counts: UInt64Array::from(vec![4]), | ||
} | ||
.run("i"); | ||
} | ||
|
||
// BUG: not convert UInt32Array to Int32Array | ||
// https://github.com/apache/datafusion/issues/10604 | ||
#[tokio::test] | ||
async fn test_uint32_range() { | ||
let row_per_group = 5; | ||
// This creates a parquet file of 1 column "u" | ||
// file has 2 record batches, each has 2 rows. They will be saved into one row group | ||
let reader = parquet_file_many_columns(Scenario::UInt32Range, row_per_group).await; | ||
|
||
Test { | ||
reader, | ||
expected_min: Arc::new(Int32Array::from(vec![0])), // shoudld be UInt32Array | ||
expected_max: Arc::new(Int32Array::from(vec![300000])), // shoudld be UInt32Array | ||
expected_null_counts: UInt64Array::from(vec![0]), | ||
expected_row_counts: UInt64Array::from(vec![4]), | ||
} | ||
.run("u"); | ||
} | ||
|
||
#[tokio::test] | ||
async fn test_float64() { | ||
let row_per_group = 5; | ||
// This creates a parquet file of 1 column "f" | ||
// file has 4 record batches, each has 5 rows. They will be saved into 4 row groups | ||
let reader = parquet_file_many_columns(Scenario::Float64, row_per_group).await; | ||
|
||
Test { | ||
reader, | ||
expected_min: Arc::new(Float64Array::from(vec![-5.0, -4.0, -0.0, 5.0])), | ||
expected_max: Arc::new(Float64Array::from(vec![-1.0, 0.0, 4.0, 9.0])), | ||
expected_null_counts: UInt64Array::from(vec![0, 0, 0, 0]), | ||
expected_row_counts: UInt64Array::from(vec![5, 5, 5, 5]), | ||
} | ||
.run("f"); | ||
} | ||
|
||
#[tokio::test] | ||
async fn test_decimal() { | ||
let row_per_group = 5; | ||
// This creates a parquet file of 1 column "decimal_col" with decimal data type and precicion 9, scale 2 | ||
// file has 3 record batches, each has 5 rows. They will be saved into 3 row groups | ||
let reader = parquet_file_many_columns(Scenario::Decimal, row_per_group).await; | ||
|
||
Test { | ||
reader, | ||
expected_min: Arc::new( | ||
Decimal128Array::from(vec![100, -500, 2000]) | ||
.with_precision_and_scale(9, 2) | ||
.unwrap(), | ||
), | ||
expected_max: Arc::new( | ||
Decimal128Array::from(vec![600, 600, 6000]) | ||
.with_precision_and_scale(9, 2) | ||
.unwrap(), | ||
), | ||
expected_null_counts: UInt64Array::from(vec![0, 0, 0]), | ||
expected_row_counts: UInt64Array::from(vec![5, 5, 5]), | ||
} | ||
.run("decimal_col"); | ||
} | ||
|
||
// BUG: not convert BinaryArray to StringArray | ||
// https://github.com/apache/datafusion/issues/10605 | ||
#[tokio::test] | ||
async fn test_byte() { | ||
let row_per_group = 5; | ||
|
||
// This creates a parquet file of 4 columns | ||
// "name" | ||
// "service_string" | ||
// "service_binary" | ||
// "service_fixedsize" | ||
|
||
// file has 3 record batches, each has 5 rows. They will be saved into 3 row groups | ||
let reader = parquet_file_many_columns(Scenario::ByteArray, row_per_group).await; | ||
|
||
// column "name" | ||
Test { | ||
reader, | ||
expected_min: Arc::new(StringArray::from(vec![ | ||
"all frontends", | ||
"mixed", | ||
"all backends", | ||
])), | ||
expected_max: Arc::new(StringArray::from(vec![ | ||
"all frontends", | ||
"mixed", | ||
"all backends", | ||
])), | ||
expected_null_counts: UInt64Array::from(vec![0, 0, 0]), | ||
expected_row_counts: UInt64Array::from(vec![5, 5, 5]), | ||
} | ||
.run("name"); | ||
|
||
// column "service_string" | ||
let reader = parquet_file_many_columns(Scenario::ByteArray, row_per_group).await; | ||
Test { | ||
reader, | ||
expected_min: Arc::new(StringArray::from(vec![ | ||
"frontend five", | ||
"backend one", | ||
"backend eight", | ||
])), | ||
expected_max: Arc::new(StringArray::from(vec![ | ||
"frontend two", | ||
"frontend six", | ||
"backend six", | ||
])), | ||
expected_null_counts: UInt64Array::from(vec![0, 0, 0]), | ||
expected_row_counts: UInt64Array::from(vec![5, 5, 5]), | ||
} | ||
.run("service_string"); | ||
|
||
// column "service_binary" | ||
let reader = parquet_file_many_columns(Scenario::ByteArray, row_per_group).await; | ||
Test { | ||
reader, | ||
expected_min: Arc::new(StringArray::from(vec![ | ||
"frontend five", | ||
"backend one", | ||
"backend eight", | ||
])), // Shuld be BinaryArray | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 👍 |
||
expected_max: Arc::new(StringArray::from(vec![ | ||
"frontend two", | ||
"frontend six", | ||
"backend six", | ||
])), // Shuld be BinaryArray | ||
expected_null_counts: UInt64Array::from(vec![0, 0, 0]), | ||
expected_row_counts: UInt64Array::from(vec![5, 5, 5]), | ||
} | ||
.run("service_binary"); | ||
|
||
// column "service_fixedsize" | ||
// b"fe1", b"be1", b"be4" | ||
let min_input = vec![vec![102, 101, 49], vec![98, 101, 49], vec![98, 101, 52]]; | ||
// b"fe5", b"fe6", b"be8" | ||
let max_input = vec![vec![102, 101, 55], vec![102, 101, 54], vec![98, 101, 56]]; | ||
let reader = parquet_file_many_columns(Scenario::ByteArray, row_per_group).await; | ||
Test { | ||
reader, | ||
expected_min: Arc::new( | ||
FixedSizeBinaryArray::try_from_iter(min_input.into_iter()).unwrap(), | ||
), | ||
expected_max: Arc::new( | ||
FixedSizeBinaryArray::try_from_iter(max_input.into_iter()).unwrap(), | ||
), | ||
expected_null_counts: UInt64Array::from(vec![0, 0, 0]), | ||
expected_row_counts: UInt64Array::from(vec![5, 5, 5]), | ||
} | ||
.run("service_fixedsize"); | ||
} | ||
|
||
// PeriodsInColumnNames | ||
#[tokio::test] | ||
async fn test_period_in_column_names() { | ||
let row_per_group = 5; | ||
// This creates a parquet file of 2 columns "name" and "service.name" | ||
// file has 3 record batches, each has 5 rows. They will be saved into 3 row groups | ||
let reader = | ||
parquet_file_many_columns(Scenario::PeriodsInColumnNames, row_per_group).await; | ||
|
||
// column "name" | ||
Test { | ||
reader, | ||
expected_min: Arc::new(StringArray::from(vec![ | ||
"HTTP GET / DISPATCH", | ||
"HTTP PUT / DISPATCH", | ||
"HTTP GET / DISPATCH", | ||
])), | ||
expected_max: Arc::new(StringArray::from(vec![ | ||
"HTTP GET / DISPATCH", | ||
"HTTP PUT / DISPATCH", | ||
"HTTP GET / DISPATCH", | ||
])), | ||
expected_null_counts: UInt64Array::from(vec![0, 0, 0]), | ||
expected_row_counts: UInt64Array::from(vec![5, 5, 5]), | ||
} | ||
.run("name"); | ||
|
||
// column "service.name" | ||
let reader = | ||
parquet_file_many_columns(Scenario::PeriodsInColumnNames, row_per_group).await; | ||
Test { | ||
reader, | ||
expected_min: Arc::new(StringArray::from(vec!["frontend", "backend", "backend"])), | ||
expected_max: Arc::new(StringArray::from(vec![ | ||
"frontend", "frontend", "backend", | ||
])), | ||
expected_null_counts: UInt64Array::from(vec![0, 0, 0]), | ||
expected_row_counts: UInt64Array::from(vec![5, 5, 5]), | ||
} | ||
.run("service.name"); | ||
} | ||
|
||
// TODO: | ||
// Other data types to tests | ||
// `u8`, `u16`, `u32`, and `u64`, | ||
// UInt, | ||
// UInt32Range, | ||
// Float64, | ||
// Decimal, | ||
// DecimalBloomFilterInt32, | ||
// DecimalBloomFilterInt64, | ||
// DecimalLargePrecision, | ||
// DecimalLargePrecisionBloomFilter, | ||
// ByteArray, | ||
// PeriodsInColumnNames, | ||
// WithNullValuesPageLevel, | ||
// WITHOUT Stats | ||
|
||
/////// NEGATIVE TESTS /////// | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Another important thing to test with decimals is different precision / scales -- maybe we can do this as a different PR
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@alamb : can you be more specific? In the test below, I had to make sure they have the same precision & scale. What else do we have to test here?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I was thinking smaller precisions -- I can't remember but I vaguely remember that spark stores different scale decimals with different underlying datatypes or something