Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add example of dataframe API aggregations #11219

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 56 additions & 0 deletions datafusion-examples/examples/csv_compressed.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use datafusion::datasource::file_format::file_compression_type::FileCompressionType;
use datafusion::error::Result;
use datafusion::prelude::*;

/// This example demonstrates executing a simple query against a compressed CSV file
#[tokio::main]
async fn main() -> Result<()> {
// create local execution context
let ctx = SessionContext::new();

let testdata = datafusion::test_util::arrow_test_data();

// register csv file with the execution context
ctx.register_csv(
"aggregate_test_100",
&format!("{testdata}/csv/aggregate_test_100.csv"),
CsvReadOptions::new(),
)
.await?;

// query compressed CSV with specific options
let csv_options = CsvReadOptions::default()
.has_header(true)
.file_compression_type(FileCompressionType::GZIP)
.file_extension("csv.gz");
let df = ctx
.read_csv(
&format!("{testdata}/csv/aggregate_test_100.csv.gz"),
csv_options,
)
.await?;
let df = df
.filter(col("c1").eq(lit("a")))?
.select_columns(&["c2", "c3"])?;

df.show().await?;

Ok(())
}
48 changes: 48 additions & 0 deletions datafusion-examples/examples/csv_dataframe.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use datafusion::error::Result;
use datafusion::functions_aggregate::count::count;
use datafusion::prelude::*;

/// This example demonstrates executing a DataFrame operation against an Arrow data source (CSV) and
/// fetching results. See `csv_sql.rs` for a SQL version of this example.
#[tokio::main]
async fn main() -> Result<()> {
// create local execution context
let ctx = SessionContext::new();

let testdata = datafusion::test_util::arrow_test_data();

// execute the query
let df = ctx
.read_csv(
&format!("{testdata}/csv/aggregate_test_100.csv"),
CsvReadOptions::new(),
)
.await?
.filter(col("c11").gt(lit(0.1)).and(col("c11").lt(lit(0.9))))?
.aggregate(
vec![col("c1")],
vec![min(col("c12")), max(col("c12")), count(wildcard())],
)?;

// print the results
df.show().await?;

Ok(())
}
22 changes: 2 additions & 20 deletions datafusion-examples/examples/csv_sql.rs
Original file line number Diff line number Diff line change
Expand Up @@ -15,12 +15,11 @@
// specific language governing permissions and limitations
// under the License.

use datafusion::datasource::file_format::file_compression_type::FileCompressionType;
use datafusion::error::Result;
use datafusion::prelude::*;

/// This example demonstrates executing a simple query against an Arrow data source (CSV) and
/// fetching results
/// fetching results. See `csv_dataframe.rs` for a DataFrame version of this example.
#[tokio::main]
async fn main() -> Result<()> {
// create local execution context
Expand All @@ -39,7 +38,7 @@ async fn main() -> Result<()> {
// execute the query
let df = ctx
.sql(
"SELECT c1, MIN(c12), MAX(c12) \
"SELECT c1, MIN(c12), MAX(c12), COUNT(*) \
FROM aggregate_test_100 \
WHERE c11 > 0.1 AND c11 < 0.9 \
GROUP BY c1",
Expand All @@ -49,22 +48,5 @@ async fn main() -> Result<()> {
// print the results
df.show().await?;

// query compressed CSV with specific options
let csv_options = CsvReadOptions::default()
.has_header(true)
.file_compression_type(FileCompressionType::GZIP)
.file_extension("csv.gz");
let df = ctx
.read_csv(
&format!("{testdata}/csv/aggregate_test_100.csv.gz"),
csv_options,
)
.await?;
let df = df
.filter(col("c1").eq(lit("a")))?
.select_columns(&["c2", "c3"])?;

df.show().await?;

Ok(())
}