Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,8 @@
// specific language governing permissions and limitations
// under the License.

mod decimal;
mod numeric;

pub use decimal::DecimalDistinctAvgAccumulator;
pub use numeric::Float64DistinctAvgAccumulator;
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use arrow::{
array::{ArrayRef, ArrowNumericType},
datatypes::{i256, Decimal128Type, Decimal256Type, DecimalType},
};
use datafusion_common::{Result, ScalarValue};
use datafusion_expr_common::accumulator::Accumulator;
use std::fmt::Debug;
use std::mem::size_of_val;

use crate::aggregate::sum_distinct::DistinctSumAccumulator;
use crate::utils::DecimalAverager;

/// Generic implementation of `AVG DISTINCT` for Decimal types.
/// Handles both Decimal128Type and Decimal256Type.
#[derive(Debug)]
pub struct DecimalDistinctAvgAccumulator<T: DecimalType + Debug> {
sum_accumulator: DistinctSumAccumulator<T>,
sum_scale: i8,
target_precision: u8,
target_scale: i8,
}

impl<T: DecimalType + Debug> DecimalDistinctAvgAccumulator<T> {
pub fn with_decimal_params(
sum_scale: i8,
target_precision: u8,
target_scale: i8,
) -> Self {
let data_type = T::TYPE_CONSTRUCTOR(T::MAX_PRECISION, sum_scale);

Self {
sum_accumulator: DistinctSumAccumulator::new(&data_type),
sum_scale,
target_precision,
target_scale,
}
}
}

impl<T: DecimalType + ArrowNumericType + Debug> Accumulator
for DecimalDistinctAvgAccumulator<T>
{
fn state(&mut self) -> Result<Vec<ScalarValue>> {
self.sum_accumulator.state()
}

fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
self.sum_accumulator.update_batch(values)
}

fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
self.sum_accumulator.merge_batch(states)
}

fn evaluate(&mut self) -> Result<ScalarValue> {
if self.sum_accumulator.distinct_count() == 0 {
return ScalarValue::new_primitive::<T>(
None,
&T::TYPE_CONSTRUCTOR(self.target_precision, self.target_scale),
);
}

let sum_scalar = self.sum_accumulator.evaluate()?;

match sum_scalar {
ScalarValue::Decimal128(Some(sum), _, _) => {
let decimal_averager = DecimalAverager::<Decimal128Type>::try_new(
self.sum_scale,
self.target_precision,
self.target_scale,
)?;
let avg = decimal_averager
.avg(sum, self.sum_accumulator.distinct_count() as i128)?;
Ok(ScalarValue::Decimal128(
Some(avg),
self.target_precision,
self.target_scale,
))
}
ScalarValue::Decimal256(Some(sum), _, _) => {
let decimal_averager = DecimalAverager::<Decimal256Type>::try_new(
self.sum_scale,
self.target_precision,
self.target_scale,
)?;
// `distinct_count` returns `u64`, but `avg` expects `i256`
// first convert `u64` to `i128`, then convert `i128` to `i256` to avoid overflow
let distinct_cnt: i128 = self.sum_accumulator.distinct_count() as i128;
let count: i256 = i256::from_i128(distinct_cnt);
let avg = decimal_averager.avg(sum, count)?;
Ok(ScalarValue::Decimal256(
Some(avg),
self.target_precision,
self.target_scale,
))
}

_ => unreachable!("Unsupported decimal type: {:?}", sum_scalar),
}
}

fn size(&self) -> usize {
let fixed_size = size_of_val(self);

// Account for the size of the sum_accumulator with its contained values
fixed_size + self.sum_accumulator.size()
}
}

#[cfg(test)]
mod tests {
use super::*;
use arrow::array::{Decimal128Array, Decimal256Array};
use std::sync::Arc;

#[test]
fn test_decimal128_distinct_avg_accumulator() -> Result<()> {
let precision = 10_u8;
let scale = 4_i8;
let array = Decimal128Array::from(vec![
Some(100_0000),
Some(125_0000),
Some(175_0000),
Some(200_0000),
Some(200_0000),
Some(300_0000),
None,
None,
])
.with_precision_and_scale(precision, scale)?;

let mut accumulator =
DecimalDistinctAvgAccumulator::<Decimal128Type>::with_decimal_params(
scale, 14, 8,
);
accumulator.update_batch(&[Arc::new(array)])?;

let result = accumulator.evaluate()?;
let expected_result = ScalarValue::Decimal128(Some(180_00000000), 14, 8);
assert_eq!(result, expected_result);

Ok(())
}

#[test]
fn test_decimal256_distinct_avg_accumulator() -> Result<()> {
let precision = 50_u8;
let scale = 2_i8;

let array = Decimal256Array::from(vec![
Some(i256::from_i128(10_000)),
Some(i256::from_i128(12_500)),
Some(i256::from_i128(17_500)),
Some(i256::from_i128(20_000)),
Some(i256::from_i128(20_000)),
Some(i256::from_i128(30_000)),
None,
None,
])
.with_precision_and_scale(precision, scale)?;

let mut accumulator =
DecimalDistinctAvgAccumulator::<Decimal256Type>::with_decimal_params(
scale, 54, 6,
);
accumulator.update_batch(&[Arc::new(array)])?;

let result = accumulator.evaluate()?;
let expected_result =
ScalarValue::Decimal256(Some(i256::from_i128(180_000000)), 54, 6);
assert_eq!(result, expected_result);

Ok(())
}
}
59 changes: 47 additions & 12 deletions datafusion/functions-aggregate/src/average.rs
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ use arrow::datatypes::{
i256, ArrowNativeType, DataType, Decimal128Type, Decimal256Type, DecimalType,
DurationMicrosecondType, DurationMillisecondType, DurationNanosecondType,
DurationSecondType, Field, FieldRef, Float64Type, TimeUnit, UInt64Type,
DECIMAL128_MAX_PRECISION, DECIMAL256_MAX_PRECISION,
};
use datafusion_common::{
exec_err, not_impl_err, utils::take_function_args, Result, ScalarValue,
Expand All @@ -40,7 +41,9 @@ use datafusion_expr::{
ReversedUDAF, Signature,
};

use datafusion_functions_aggregate_common::aggregate::avg_distinct::Float64DistinctAvgAccumulator;
use datafusion_functions_aggregate_common::aggregate::avg_distinct::{
DecimalDistinctAvgAccumulator, Float64DistinctAvgAccumulator,
};
use datafusion_functions_aggregate_common::aggregate::groups_accumulator::accumulate::NullState;
use datafusion_functions_aggregate_common::aggregate::groups_accumulator::nulls::{
filtered_null_mask, set_nulls,
Expand Down Expand Up @@ -120,13 +123,36 @@ impl AggregateUDFImpl for Avg {

// instantiate specialized accumulator based for the type
if acc_args.is_distinct {
match &data_type {
match (&data_type, acc_args.return_type()) {
// Numeric types are converted to Float64 via `coerce_avg_type` during logical plan creation
Float64 => Ok(Box::new(Float64DistinctAvgAccumulator::default())),
_ => exec_err!("AVG(DISTINCT) for {} not supported", data_type),
(Float64, _) => Ok(Box::new(Float64DistinctAvgAccumulator::default())),

(
Decimal128(_, scale),
Decimal128(target_precision, target_scale),
) => Ok(Box::new(DecimalDistinctAvgAccumulator::<Decimal128Type>::with_decimal_params(
*scale,
*target_precision,
*target_scale,
))),

(
Decimal256(_, scale),
Decimal256(target_precision, target_scale),
) => Ok(Box::new(DecimalDistinctAvgAccumulator::<Decimal256Type>::with_decimal_params(
*scale,
*target_precision,
*target_scale,
))),

(dt, return_type) => exec_err!(
"AVG(DISTINCT) for ({} --> {}) not supported",
dt,
return_type
),
}
} else {
match (&data_type, acc_args.return_field.data_type()) {
match (&data_type, acc_args.return_type()) {
(Float64, Float64) => Ok(Box::<AvgAccumulator>::default()),
(
Decimal128(sum_precision, sum_scale),
Expand Down Expand Up @@ -161,22 +187,31 @@ impl AggregateUDFImpl for Avg {
}))
}

_ => exec_err!(
"AvgAccumulator for ({} --> {})",
&data_type,
acc_args.return_field.data_type()
),
(dt, return_type) => {
exec_err!("AvgAccumulator for ({} --> {})", dt, return_type)
}
}
}
}

fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
if args.is_distinct {
// Copied from datafusion_functions_aggregate::sum::Sum::state_fields
// Decimal accumulator actually uses a different precision during accumulation,
// see DecimalDistinctAvgAccumulator::with_decimal_params
let dt = match args.input_fields[0].data_type() {
DataType::Decimal128(_, scale) => {
DataType::Decimal128(DECIMAL128_MAX_PRECISION, *scale)
}
DataType::Decimal256(_, scale) => {
DataType::Decimal256(DECIMAL256_MAX_PRECISION, *scale)
}
_ => args.return_type().clone(),
};
// Similar to datafusion_functions_aggregate::sum::Sum::state_fields
// since the accumulator uses DistinctSumAccumulator internally.
Ok(vec![Field::new_list(
format_state_name(args.name, "avg distinct"),
Field::new_list_field(args.return_type().clone(), true),
Field::new_list_field(dt, true),
false,
)
.into()])
Expand Down
Loading
Loading