Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor distinct_expressions.rs and split into count_distinct.rs and array_agg_distinct.rs #2386

Merged
merged 1 commit into from
Apr 30, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
308 changes: 308 additions & 0 deletions datafusion/physical-expr/src/aggregate/array_agg_distinct.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,308 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

//! Implementations for DISTINCT expressions, e.g. `COUNT(DISTINCT c)`

use super::*;
use arrow::datatypes::{DataType, Field};
use std::any::Any;
use std::fmt::Debug;
use std::sync::Arc;

use arrow::array::{Array, ArrayRef};
use std::collections::HashSet;

use crate::{AggregateExpr, PhysicalExpr};
use datafusion_common::Result;
use datafusion_common::ScalarValue;
use datafusion_expr::Accumulator;

/// Expression for a ARRAY_AGG(DISTINCT) aggregation.
#[derive(Debug)]
pub struct DistinctArrayAgg {
/// Column name
name: String,
/// The DataType for the input expression
input_data_type: DataType,
/// The input expression
expr: Arc<dyn PhysicalExpr>,
}

impl DistinctArrayAgg {
/// Create a new DistinctArrayAgg aggregate function
pub fn new(
expr: Arc<dyn PhysicalExpr>,
name: impl Into<String>,
input_data_type: DataType,
) -> Self {
let name = name.into();
Self {
name,
expr,
input_data_type,
}
}
}

impl AggregateExpr for DistinctArrayAgg {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}

fn field(&self) -> Result<Field> {
Ok(Field::new(
&self.name,
DataType::List(Box::new(Field::new(
"item",
self.input_data_type.clone(),
true,
))),
false,
))
}

fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(DistinctArrayAggAccumulator::try_new(
&self.input_data_type,
)?))
}

fn state_fields(&self) -> Result<Vec<Field>> {
Ok(vec![Field::new(
&format_state_name(&self.name, "distinct_array_agg"),
DataType::List(Box::new(Field::new(
"item",
self.input_data_type.clone(),
true,
))),
false,
)])
}

fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![self.expr.clone()]
}

fn name(&self) -> &str {
&self.name
}
}

#[derive(Debug)]
struct DistinctArrayAggAccumulator {
values: HashSet<ScalarValue>,
datatype: DataType,
}

impl DistinctArrayAggAccumulator {
pub fn try_new(datatype: &DataType) -> Result<Self> {
Ok(Self {
values: HashSet::new(),
datatype: datatype.clone(),
})
}
}

impl Accumulator for DistinctArrayAggAccumulator {
fn state(&self) -> Result<Vec<ScalarValue>> {
Ok(vec![ScalarValue::List(
Some(Box::new(self.values.clone().into_iter().collect())),
Box::new(self.datatype.clone()),
)])
}

fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
assert_eq!(values.len(), 1, "batch input should only include 1 column!");

let arr = &values[0];
for i in 0..arr.len() {
self.values.insert(ScalarValue::try_from_array(arr, i)?);
}
Ok(())
}

fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
if states.is_empty() {
return Ok(());
};

for array in states {
for j in 0..array.len() {
self.values.insert(ScalarValue::try_from_array(array, j)?);
}
}

Ok(())
}

fn evaluate(&self) -> Result<ScalarValue> {
Ok(ScalarValue::List(
Some(Box::new(self.values.clone().into_iter().collect())),
Box::new(self.datatype.clone()),
))
}
}

#[cfg(test)]
mod tests {
use super::*;
use crate::expressions::col;
use crate::expressions::tests::aggregate;
use arrow::array::{ArrayRef, Int32Array};
use arrow::datatypes::{DataType, Schema};
use arrow::record_batch::RecordBatch;

fn check_distinct_array_agg(
input: ArrayRef,
expected: ScalarValue,
datatype: DataType,
) -> Result<()> {
let schema = Schema::new(vec![Field::new("a", datatype.clone(), false)]);
let batch = RecordBatch::try_new(Arc::new(schema.clone()), vec![input])?;

let agg = Arc::new(DistinctArrayAgg::new(
col("a", &schema)?,
"bla".to_string(),
datatype,
));
let actual = aggregate(&batch, agg)?;

match (expected, actual) {
(ScalarValue::List(Some(mut e), _), ScalarValue::List(Some(mut a), _)) => {
// workaround lack of Ord of ScalarValue
let cmp = |a: &ScalarValue, b: &ScalarValue| {
a.partial_cmp(b).expect("Can compare ScalarValues")
};

e.sort_by(cmp);
a.sort_by(cmp);
// Check that the inputs are the same
assert_eq!(e, a);
}
_ => {
unreachable!()
}
}

Ok(())
}

#[test]
fn distinct_array_agg_i32() -> Result<()> {
let col: ArrayRef = Arc::new(Int32Array::from(vec![1, 2, 7, 4, 5, 2]));

let out = ScalarValue::List(
Some(Box::new(vec![
ScalarValue::Int32(Some(1)),
ScalarValue::Int32(Some(2)),
ScalarValue::Int32(Some(7)),
ScalarValue::Int32(Some(4)),
ScalarValue::Int32(Some(5)),
])),
Box::new(DataType::Int32),
);

check_distinct_array_agg(col, out, DataType::Int32)
}

#[test]
fn distinct_array_agg_nested() -> Result<()> {
// [[1, 2, 3], [4, 5]]
let l1 = ScalarValue::List(
Some(Box::new(vec![
ScalarValue::List(
Some(Box::new(vec![
ScalarValue::from(1i32),
ScalarValue::from(2i32),
ScalarValue::from(3i32),
])),
Box::new(DataType::Int32),
),
ScalarValue::List(
Some(Box::new(vec![
ScalarValue::from(4i32),
ScalarValue::from(5i32),
])),
Box::new(DataType::Int32),
),
])),
Box::new(DataType::List(Box::new(Field::new(
"item",
DataType::Int32,
true,
)))),
);

// [[6], [7, 8]]
let l2 = ScalarValue::List(
Some(Box::new(vec![
ScalarValue::List(
Some(Box::new(vec![ScalarValue::from(6i32)])),
Box::new(DataType::Int32),
),
ScalarValue::List(
Some(Box::new(vec![
ScalarValue::from(7i32),
ScalarValue::from(8i32),
])),
Box::new(DataType::Int32),
),
])),
Box::new(DataType::List(Box::new(Field::new(
"item",
DataType::Int32,
true,
)))),
);

// [[9]]
let l3 = ScalarValue::List(
Some(Box::new(vec![ScalarValue::List(
Some(Box::new(vec![ScalarValue::from(9i32)])),
Box::new(DataType::Int32),
)])),
Box::new(DataType::List(Box::new(Field::new(
"item",
DataType::Int32,
true,
)))),
);

let list = ScalarValue::List(
Some(Box::new(vec![l1.clone(), l2.clone(), l3.clone()])),
Box::new(DataType::List(Box::new(Field::new(
"item",
DataType::Int32,
true,
)))),
);

// Duplicate l1 in the input array and check that it is deduped in the output.
let array = ScalarValue::iter_to_array(vec![l1.clone(), l2, l3, l1]).unwrap();

check_distinct_array_agg(
array,
list,
DataType::List(Box::new(Field::new(
"item",
DataType::List(Box::new(Field::new("item", DataType::Int32, true))),
true,
))),
)
}
}
Loading