Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement window functions with partition_by clause #558

Merged
merged 1 commit into from
Jun 21, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
74 changes: 74 additions & 0 deletions datafusion/src/execution/context.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1355,6 +1355,80 @@ mod tests {
Ok(())
}

#[tokio::test]
async fn window_partition_by() -> Result<()> {
let results = execute(
"SELECT \
c1, \
c2, \
SUM(c2) OVER (PARTITION BY c2), \
COUNT(c2) OVER (PARTITION BY c2), \
MAX(c2) OVER (PARTITION BY c2), \
MIN(c2) OVER (PARTITION BY c2), \
AVG(c2) OVER (PARTITION BY c2) \
FROM test \
ORDER BY c1, c2 \
LIMIT 5",
4,
)
.await?;

let expected = vec![
"+----+----+---------+-----------+---------+---------+---------+",
"| c1 | c2 | SUM(c2) | COUNT(c2) | MAX(c2) | MIN(c2) | AVG(c2) |",
"+----+----+---------+-----------+---------+---------+---------+",
"| 0 | 1 | 4 | 4 | 1 | 1 | 1 |",
"| 0 | 2 | 8 | 4 | 2 | 2 | 2 |",
"| 0 | 3 | 12 | 4 | 3 | 3 | 3 |",
"| 0 | 4 | 16 | 4 | 4 | 4 | 4 |",
"| 0 | 5 | 20 | 4 | 5 | 5 | 5 |",
"+----+----+---------+-----------+---------+---------+---------+",
];

// window function shall respect ordering
assert_batches_eq!(expected, &results);
Ok(())
}

#[tokio::test]
async fn window_partition_by_order_by() -> Result<()> {
let results = execute(
"SELECT \
c1, \
c2, \
ROW_NUMBER() OVER (PARTITION BY c2 ORDER BY c1), \
FIRST_VALUE(c2 + c1) OVER (PARTITION BY c2 ORDER BY c1), \
LAST_VALUE(c2 + c1) OVER (PARTITION BY c2 ORDER BY c1), \
NTH_VALUE(c2 + c1, 2) OVER (PARTITION BY c2 ORDER BY c1), \
SUM(c2) OVER (PARTITION BY c2 ORDER BY c1), \
COUNT(c2) OVER (PARTITION BY c2 ORDER BY c1), \
MAX(c2) OVER (PARTITION BY c2 ORDER BY c1), \
MIN(c2) OVER (PARTITION BY c2 ORDER BY c1), \
AVG(c2) OVER (PARTITION BY c2 ORDER BY c1) \
FROM test \
ORDER BY c1, c2 \
LIMIT 5",
4,
)
.await?;

let expected = vec![
"+----+----+--------------+-------------------------+------------------------+--------------------------------+---------+-----------+---------+---------+---------+",
"| c1 | c2 | ROW_NUMBER() | FIRST_VALUE(c2 Plus c1) | LAST_VALUE(c2 Plus c1) | NTH_VALUE(c2 Plus c1,Int64(2)) | SUM(c2) | COUNT(c2) | MAX(c2) | MIN(c2) | AVG(c2) |",
"+----+----+--------------+-------------------------+------------------------+--------------------------------+---------+-----------+---------+---------+---------+",
"| 0 | 1 | 1 | 1 | 4 | 2 | 1 | 1 | 1 | 1 | 1 |",
"| 0 | 2 | 1 | 2 | 5 | 3 | 2 | 1 | 2 | 2 | 2 |",
"| 0 | 3 | 1 | 3 | 6 | 4 | 3 | 1 | 3 | 3 | 3 |",
"| 0 | 4 | 1 | 4 | 7 | 5 | 4 | 1 | 4 | 4 | 4 |",
"| 0 | 5 | 1 | 5 | 8 | 6 | 5 | 1 | 5 | 5 | 5 |",
"+----+----+--------------+-------------------------+------------------------+--------------------------------+---------+-----------+---------+---------+---------+",
];

// window function shall respect ordering
assert_batches_eq!(expected, &results);
Ok(())
}

#[tokio::test]
async fn aggregate() -> Result<()> {
let results = execute("SELECT SUM(c1), SUM(c2) FROM test", 4).await?;
Expand Down
10 changes: 7 additions & 3 deletions datafusion/src/physical_plan/expressions/nth_value.rs
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
use crate::error::{DataFusionError, Result};
use crate::physical_plan::{window_functions::BuiltInWindowFunctionExpr, PhysicalExpr};
use crate::scalar::ScalarValue;
use arrow::array::{new_empty_array, ArrayRef};
use arrow::array::{new_empty_array, new_null_array, ArrayRef};
use arrow::datatypes::{DataType, Field};
use std::any::Any;
use std::sync::Arc;
Expand Down Expand Up @@ -135,8 +135,12 @@ impl BuiltInWindowFunctionExpr for NthValue {
NthValueKind::Last => (num_rows as usize) - 1,
NthValueKind::Nth(n) => (n as usize) - 1,
};
let value = ScalarValue::try_from_array(value, index)?;
Ok(value.to_array_of_size(num_rows))
Ok(if index >= num_rows {
new_null_array(value.data_type(), num_rows)
} else {
let value = ScalarValue::try_from_array(value, index)?;
value.to_array_of_size(num_rows)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The same here applies for normal aggregations as probably happens here: if we have a partition by that creates a lot of groups, we will create many individual arrow arrays (which is slow / memory consuming).

Probably what would be better in the long run is store the offsets to the values in a contiguous array, and the values as well and extend / update them instead.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Not needed for this PR btw, but just noting there are similar needs/performance issues in both aggregation and window functions.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I agree, not in this pull request but I believe this can warrant a dedicated compute kernel in arrow for batched array slice transformation and then concatenation

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@Dandandan down the road I've started to work on this issue:

https://github.com/apache/arrow-datafusion/pull/579/files#diff-8b6b5ea3976c91229244e4e7a31a7026422b1374d1683e44b41af67a6bd43187R246-R254

-        let results = partition_points
-            .iter()
-            .map(|partition_range| {
-                let sort_partition_points =
-                    find_ranges_in_range(partition_range, &sort_partition_points);
-                let mut window_accumulators = self.create_accumulator()?;
-                sort_partition_points
-                    .iter()
-                    .map(|range| window_accumulators.scan_peers(&values, range))
-                    .collect::<Result<Vec<_>>>()
-            })
-            .collect::<Result<Vec<Vec<ArrayRef>>>>()?
-            .into_iter()
-            .flatten()
-            .collect::<Vec<ArrayRef>>();
-        let results = results.iter().map(|i| i.as_ref()).collect::<Vec<_>>();
-        concat(&results).map_err(DataFusionError::ArrowError)
+        let mut result = Vec::with_capacity(num_rows);
+        for partition_range in partition_points {
+            let sort_partition_points =
+                find_ranges_in_range(&partition_range, &sort_partition_points);
+            let mut window_accumulators = self.create_accumulator()?;
+            for range in sort_partition_points {
+                result.extend(window_accumulators.scan_peers(&values, range)?);
+            }
+        }
+        ScalarValue::iter_to_array(result.into_iter())

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes - that should probably already be quite an improvement 👍

})
}
}

Expand Down
36 changes: 22 additions & 14 deletions datafusion/src/physical_plan/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -485,19 +485,20 @@ pub trait WindowExpr: Send + Sync + Debug {
/// evaluate the window function values against the batch
fn evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef>;

/// evaluate the sort partition points
fn evaluate_sort_partition_points(
/// evaluate the partition points given the sort columns; if the sort columns are
/// empty then the result will be a single element vec of the whole column rows.
fn evaluate_partition_points(
&self,
batch: &RecordBatch,
num_rows: usize,
partition_columns: &[SortColumn],
) -> Result<Vec<Range<usize>>> {
let sort_columns = self.sort_columns(batch)?;
if sort_columns.is_empty() {
if partition_columns.is_empty() {
Ok(vec![Range {
start: 0,
end: batch.num_rows(),
end: num_rows,
}])
} else {
lexicographical_partition_ranges(&sort_columns)
lexicographical_partition_ranges(partition_columns)
.map_err(DataFusionError::ArrowError)
}
}
Expand All @@ -508,8 +509,8 @@ pub trait WindowExpr: Send + Sync + Debug {
/// expressions that's from the window function's order by clause, empty if absent
fn order_by(&self) -> &[PhysicalSortExpr];

/// get sort columns that can be used for partitioning, empty if absent
fn sort_columns(&self, batch: &RecordBatch) -> Result<Vec<SortColumn>> {
/// get partition columns that can be used for partitioning, empty if absent
fn partition_columns(&self, batch: &RecordBatch) -> Result<Vec<SortColumn>> {
self.partition_by()
.iter()
.map(|expr| {
Expand All @@ -519,13 +520,20 @@ pub trait WindowExpr: Send + Sync + Debug {
}
.evaluate_to_sort_column(batch)
})
.chain(
self.order_by()
.iter()
.map(|e| e.evaluate_to_sort_column(batch)),
)
.collect()
}

/// get sort columns that can be used for peer evaluation, empty if absent
fn sort_columns(&self, batch: &RecordBatch) -> Result<Vec<SortColumn>> {
let mut sort_columns = self.partition_columns(batch)?;
let order_by_columns = self
.order_by()
.iter()
.map(|e| e.evaluate_to_sort_column(batch))
.collect::<Result<Vec<SortColumn>>>()?;
sort_columns.extend(order_by_columns);
Ok(sort_columns)
}
}

/// An accumulator represents a stateful object that lives throughout the evaluation of multiple rows and
Expand Down
6 changes: 0 additions & 6 deletions datafusion/src/physical_plan/planner.rs
Original file line number Diff line number Diff line change
Expand Up @@ -775,12 +775,6 @@ impl DefaultPhysicalPlanner {
)),
})
.collect::<Result<Vec<_>>>()?;
if !partition_by.is_empty() {
return Err(DataFusionError::NotImplemented(
"window expression with non-empty partition by clause is not yet supported"
.to_owned(),
));
}
if window_frame.is_some() {
return Err(DataFusionError::NotImplemented(
"window expression with window frame definition is not yet supported"
Expand Down
61 changes: 55 additions & 6 deletions datafusion/src/physical_plan/windows.rs
Original file line number Diff line number Diff line change
Expand Up @@ -175,10 +175,45 @@ impl WindowExpr for BuiltInWindowExpr {
// case when partition_by is supported, in which case we'll parallelize the calls.
// See https://github.com/apache/arrow-datafusion/issues/299
let values = self.evaluate_args(batch)?;
self.window.evaluate(batch.num_rows(), &values)
let partition_points = self.evaluate_partition_points(
batch.num_rows(),
&self.partition_columns(batch)?,
)?;
let results = partition_points
.iter()
.map(|partition_range| {
let start = partition_range.start;
let len = partition_range.end - start;
let values = values
.iter()
.map(|arr| arr.slice(start, len))
.collect::<Vec<_>>();
self.window.evaluate(len, &values)
})
.collect::<Result<Vec<_>>>()?
.into_iter()
.collect::<Vec<ArrayRef>>();
let results = results.iter().map(|i| i.as_ref()).collect::<Vec<_>>();
concat(&results).map_err(DataFusionError::ArrowError)
}
}

/// Given a partition range, and the full list of sort partition points, given that the sort
/// partition points are sorted using [partition columns..., order columns...], the split
/// boundaries would align (what's sorted on [partition columns...] would definitely be sorted
/// on finer columns), so this will use binary search to find ranges that are within the
/// partition range and return the valid slice.
fn find_ranges_in_range<'a>(
partition_range: &Range<usize>,
sort_partition_points: &'a [Range<usize>],
) -> &'a [Range<usize>] {
let start_idx = sort_partition_points
.partition_point(|sort_range| sort_range.start < partition_range.start);
let end_idx = sort_partition_points
.partition_point(|sort_range| sort_range.end <= partition_range.end);
&sort_partition_points[start_idx..end_idx]
}

/// A window expr that takes the form of an aggregate function
#[derive(Debug)]
pub struct AggregateWindowExpr {
Expand All @@ -205,13 +240,27 @@ impl AggregateWindowExpr {
/// and then per partition point we'll evaluate the peer group (e.g. SUM or MAX gives the same
/// results for peers) and concatenate the results.
fn peer_based_evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef> {
let sort_partition_points = self.evaluate_sort_partition_points(batch)?;
let mut window_accumulators = self.create_accumulator()?;
let num_rows = batch.num_rows();
let partition_points =
self.evaluate_partition_points(num_rows, &self.partition_columns(batch)?)?;
let sort_partition_points =
self.evaluate_partition_points(num_rows, &self.sort_columns(batch)?)?;
let values = self.evaluate_args(batch)?;
let results = sort_partition_points
let results = partition_points
.iter()
.map(|peer_range| window_accumulators.scan_peers(&values, peer_range))
.collect::<Result<Vec<_>>>()?;
.map(|partition_range| {
let sort_partition_points =
find_ranges_in_range(partition_range, &sort_partition_points);
let mut window_accumulators = self.create_accumulator()?;
sort_partition_points
.iter()
.map(|range| window_accumulators.scan_peers(&values, range))
.collect::<Result<Vec<_>>>()
})
.collect::<Result<Vec<Vec<ArrayRef>>>>()?
.into_iter()
.flatten()
.collect::<Vec<ArrayRef>>();
let results = results.iter().map(|i| i.as_ref()).collect::<Vec<_>>();
concat(&results).map_err(DataFusionError::ArrowError)
}
Expand Down
64 changes: 64 additions & 0 deletions datafusion/tests/sql.rs
Original file line number Diff line number Diff line change
Expand Up @@ -868,6 +868,70 @@ async fn csv_query_window_with_empty_over() -> Result<()> {
Ok(())
}

#[tokio::test]
async fn csv_query_window_with_partition_by() -> Result<()> {
let mut ctx = ExecutionContext::new();
register_aggregate_csv(&mut ctx)?;
let sql = "select \
c9, \
sum(cast(c4 as Int)) over (partition by c3), \
avg(cast(c4 as Int)) over (partition by c3), \
count(cast(c4 as Int)) over (partition by c3), \
max(cast(c4 as Int)) over (partition by c3), \
min(cast(c4 as Int)) over (partition by c3), \
first_value(cast(c4 as Int)) over (partition by c3), \
last_value(cast(c4 as Int)) over (partition by c3), \
nth_value(cast(c4 as Int), 2) over (partition by c3) \
from aggregate_test_100 \
order by c9 \
limit 5";
let actual = execute(&mut ctx, sql).await;
let expected = vec![
vec![
"28774375", "-16110", "-16110", "1", "-16110", "-16110", "-16110", "-16110",
"NULL",
],
vec![
"63044568", "3917", "3917", "1", "3917", "3917", "3917", "3917", "NULL",
],
vec![
"141047417",
"-38455",
"-19227.5",
"2",
"-16974",
"-21481",
"-16974",
"-21481",
"-21481",
],
vec![
"141680161",
"-1114",
"-1114",
"1",
"-1114",
"-1114",
"-1114",
"-1114",
"NULL",
],
vec![
"145294611",
"15673",
"15673",
"1",
"15673",
"15673",
"15673",
"15673",
"NULL",
],
];
assert_eq!(expected, actual);
Ok(())
}

#[tokio::test]
async fn csv_query_window_with_order_by() -> Result<()> {
let mut ctx = ExecutionContext::new();
Expand Down
26 changes: 26 additions & 0 deletions integration-tests/sqls/simple_window_partition_aggregation.sql
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
-- Licensed to the Apache Software Foundation (ASF) under one
-- or more contributor license agreements. See the NOTICE file
-- distributed with this work for additional information
-- regarding copyright ownership. The ASF licenses this file
-- to you under the Apache License, Version 2.0 (the
-- "License"); you may not use this file except in compliance
-- with the License. You may obtain a copy of the License at

-- http://www.apache.org/licenses/LICENSE-2.0

-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language gOVERning permissions and
-- limitations under the License.

SELECT
c9,
row_number() OVER (PARTITION BY c2, c9) AS row_number,
count(c3) OVER (PARTITION BY c2) AS count_c3,
avg(c3) OVER (PARTITION BY c2) AS avg_c3_by_c2,
sum(c3) OVER (PARTITION BY c2) AS sum_c3_by_c2,
max(c3) OVER (PARTITION BY c2) AS max_c3_by_c2,
min(c3) OVER (PARTITION BY c2) AS min_c3_by_c2
FROM test
ORDER BY c9;
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
-- Licensed to the Apache Software Foundation (ASF) under one
-- or more contributor license agreements. See the NOTICE file
-- distributed with this work for additional information
-- regarding copyright ownership. The ASF licenses this file
-- to you under the Apache License, Version 2.0 (the
-- "License"); you may not use this file except in compliance
-- with the License. You may obtain a copy of the License at

-- http://www.apache.org/licenses/LICENSE-2.0

-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language gOVERning permissions and
-- limitations under the License.

SELECT
c9,
row_number() OVER (PARTITION BY c2 ORDER BY c9) AS row_number,
count(c3) OVER (PARTITION BY c2 ORDER BY c9) AS count_c3,
avg(c3) OVER (PARTITION BY c2 ORDER BY c9) AS avg_c3_by_c2,
sum(c3) OVER (PARTITION BY c2 ORDER BY c9) AS sum_c3_by_c2,
max(c3) OVER (PARTITION BY c2 ORDER BY c9) AS max_c3_by_c2,
min(c3) OVER (PARTITION BY c2 ORDER BY c9) AS min_c3_by_c2
FROM test
ORDER BY c9;
2 changes: 1 addition & 1 deletion integration-tests/test_psql_parity.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ class PsqlParityTest(unittest.TestCase):
def test_parity(self):
root = Path(os.path.dirname(__file__)) / "sqls"
files = set(root.glob("*.sql"))
self.assertEqual(len(files), 7, msg="tests are missed")
self.assertEqual(len(files), 9, msg="tests are missed")
for fname in files:
with self.subTest(fname=fname):
datafusion_output = pd.read_csv(
Expand Down