Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Improving documentation and error messages for Async distributed training with Gluon #11910

Merged
merged 8 commits into from
Jul 30, 2018

Conversation

rahul003
Copy link
Member

@rahul003 rahul003 commented Jul 27, 2018

Description

When using asynchronous mode of distributed training, updater has to be provided to the server. Since Symbolic mode of training always does updates on server, it generally has no issue. But Gluon provides the flexibility to determine whether to update weights on server or worker using update_on_kvstore. Also the default value for this is false, i.e. to perform weight updates on worker. This results in crash when using async mode with Gluon as this person realized #11855. We need to prevent users from running into this.

Checklist

Essentials

  • Changes are complete (i.e. I finished coding on this PR)
  • All changes have test coverage:
  • Unit tests are added for small changes to verify correctness (e.g. adding a new operator)
  • Nightly tests are added for complicated/long-running ones (e.g. changing distributed kvstore)
  • Build tests will be added for build configuration changes (e.g. adding a new build option with NCCL)
  • Code is well-documented:
  • To the my best knowledge, examples are either not affected by this change, or have been fixed to be compatible with this change

Changes

  • add error message if user sets the variable to false explicitly
  • document the behavior of kvstore
  • added nightly test for async_dist kvstore

@rahul003 rahul003 requested a review from szha as a code owner July 27, 2018 02:47
@rahul003
Copy link
Member Author

@eric-haibin-lin

Copy link
Contributor

@sandeep-krishnamurthy sandeep-krishnamurthy left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for the contributions @rahul003

### Updating weights
KVStore server supports two modes, one which aggregates the gradients and updates the weights using those gradients, and second where the server only aggregates gradients. In the latter case, when a worker process pulls from kvstore, it gets the aggregated gradients. The worker then uses these gradients and applies the weights locally.

When using Gluon there is an option to choose between these modes by passing `update_on_kvstore` variable when you create the [Trainer](https://mxnet.incubator.apache.org/versions/master/api/python/gluon/gluon.html#mxnet.gluon.Trainer) object.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Example code snippet will be very easy for reader here.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ok

@@ -187,6 +187,11 @@ def _init_kvstore(self):
arg_arrays = {param.name: param.data(self._contexts[0]) for param in self._params}
kvstore, update_on_kvstore = _create_kvstore(config['kvstore'], len(self._contexts),
arg_arrays)
if kvstore and 'async' in kvstore.type and config['update_on_kvstore'] is not None\
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If we are forcing the user to set this param, why don't we set it inside the function itself as default value?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If the user does not set that variable explicitly (default way), then I set it to the right value. If the user explicitly sets it to false, then raised the error.

Copy link
Contributor

@sandeep-krishnamurthy sandeep-krishnamurthy left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM. Thanks for your contributions Rahul!

@sandeep-krishnamurthy sandeep-krishnamurthy merged commit 478b4a1 into apache:master Jul 30, 2018
@rahul003 rahul003 deleted the async-doc branch August 6, 2018 20:58
aaronmarkham added a commit to aaronmarkham/incubator-mxnet that referenced this pull request Aug 7, 2018
* adding param for list of tags to display on website

* using new website display argument for artifact placement in version folder

* adding display logic

* remove restricted setting for testing

* update usage instructions

* reverted Jenkinsfile to use restricted nodes

[MXAPPS-581] Fixes for broken Straight Dope tests. (apache#11923)

* Update relative paths pointing to the data directory to point to the
  correct place in the testing temporary folder.

* Enable the notebooks that were previously broken because of relative
  file paths not pointing to the correct place.

* Move some notebooks we do not plan to test to the whitelist. These
  notebooks are not published in the Straight Dope book.

* Clean-up: Convert print statements to info/warn/error logging
  statements. Add some logging statements for better status.

Disable flaky test: test_spatial_transformer_with_type (apache#11930)

apache#11839

Add linux and macos MKLDNN Building Instruction (apache#11049)

* add linux and macos doc

* update doc

* Update MKL_README.md

* Update MKL_README.md

Add convolution code to verify mkldnn backend

* add homebrew link

* rename to MKLDNN_README

* add mkl verify

* trigger

* trigger

* set mac complier to gcc47

* add VS2017 support experimentally

* improve quality

* improve quality

* modify mac build instruction since prepare_mkldnn.sh has been rm

* trigger

* add some improvement

[MXNET-531] Add download util (apache#11866)

* add changes to example

* place the file to the util

* add retry scheme

* fix the retry logic

* change the DownloadUtil to Util

* Trigger the CI

[MXNET-11241] Avoid use of troublesome cudnnFind() results when grad_req='add' (apache#11338)

* Add tests that fail due to issue 11241

* Fix apache#11241 Conv1D throws CUDNN_STATUS_EXECUTION_FAILED

* Force algo 1 when grad_req==add with large c.  Expand tests.

* Shorten test runtimes.

Improving documentation and error messages for Async distributed training with Gluon (apache#11910)

* Add description about update on kvstore

* add async check for gluon

* only raise error if user set update_on_kvstore

* fix condition

* add async nightly test

* fix case when no kvstore

* add example for trainer creation in doc

[MXNET-641] fix R windows install docs (apache#11805)

* fix R windows install docs

* addressed PR comments

* PR comments

* PR comments

* fixed line wrappings

* fixed line wrappings

a hot fix for mkldnn link (apache#11939)

re-enabling randomized test_l2_normalization (apache#11900)

[MXNET-651] MXNet Model Backwards Compatibility Checker (apache#11626)

* Added MNIST-MLP-Module-API models to check model save and load_checkpoint methods

* Added LENET with Conv2D operator training file

* Added LENET with Conv2d operator inference file

* Added LanguageModelling with RNN training file

* Added LamguageModelling with RNN inference file

* Added hybridized LENET Gluon Model training file

* Added hybridized LENET gluon model inference file

* Added license headers

* Refactored the model and inference files and extracted out duplicate code in a common file

* Added runtime function for executing the MBCC files

* Added JenkinsFile for MBCC to be run as a nightly job

* Added boto3 install for s3 uploads

* Added README for MBCC

* Added license header

* Added more common functions from lm_rnn_gluon_train and inference files into common.py to clean up code

* Added scripts for training models on older versions of MXNet

* Added check for preventing inference script from crashing in case no trained models are found

* Fixed indentation issue

* Replaced Penn Tree Bank Dataset with Sherlock Holmes Dataset

* Fixed indentation issue

* Removed training in models and added smaller models. Now we are simply checking a forward pass in the model with dummy data.

* Updated README

* Fixed indentation error

* Fixed indentation error

* Removed code duplication in the training file

* Added comments for runtime_functions script for training files

* Merged S3 Buckets for storing data and models into one

* Automated the process to fetch MXNet versions from git tags

* Added defensive checks for the case where the data might not be found

* Fixed issue where we were performing inference on state model files

* Replaced print statements with logging ones

* Removed boto install statements and move them into ubuntu_python docker

* Separated training and uploading of models into separate files so that training runs in Docker and upload runs outside Docker

* Fixed pylint warnings

* Updated comments and README

* Removed the venv for training process

* Fixed indentation in the MBCC Jenkins file and also separated out training and inference into two separate stages

* Fixed indendation

* Fixed erroneous single quote

* Added --user flag to check for Jenkins error

* Removed unused methods

* Added force flag in the pip command to install mxnet

* Removed the force-re-install flag

* Changed exit 1 to exit 0

* Added quotes around the shell command

* added packlibs and unpack libs for MXNet builds

* Changed PythonPath from relative to absolute

* Created dedicated bucket with correct permission

* Fix for python path in training

* Changed bucket name to CI bucket

* Added set -ex to the upload shell script

* Now raising an exception if no models are found in the S3 bucket

* Added regex to train models script

* Added check for performing inference only on models trained on same major versions

* Added set -ex flags to shell scripts

* Added multi-version regex checks in training

* Fixed typo in regex

* Now we will train models for all the minor versions for a given major version by traversing the tags

* Added check for validating current_version

[MXNET-531] NeuralStyle Example for Scala (apache#11621)

* add initial neuralstyle and test coverage

* Add two more test and README

* kill comments

* patch on memory leaks fix

* fix formatting issues

* remove redundant files

* disable the Gan example for now

* add ignore method

* add new download scheme to match the changes
XinYao1994 pushed a commit to XinYao1994/incubator-mxnet that referenced this pull request Aug 29, 2018
…ning with Gluon (apache#11910)

* Add description about update on kvstore

* add async check for gluon

* only raise error if user set update_on_kvstore

* fix condition

* add async nightly test

* fix case when no kvstore

* add example for trainer creation in doc
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants