Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[MKLDNN] add quantized sum #14614

Merged
merged 32 commits into from
Apr 30, 2019
Merged
Show file tree
Hide file tree
Changes from 24 commits
Commits
Show all changes
32 commits
Select commit Hold shift + click to select a range
d928ef4
add quantized sum
rongzha1 Apr 4, 2019
45d831f
fix gpu compiler error and cpu testcase fail
rongzha1 Apr 7, 2019
fe60be3
add default forward function for quantized_sum
rongzha1 Apr 8, 2019
b90de11
skip quantized_sum for gpu ctx
rongzha1 Apr 8, 2019
b2c6b07
fix comments
rongzha1 Apr 9, 2019
18c7283
fix indetation and comments
rongzha1 Apr 11, 2019
659a002
retrigger CI
rongzha1 Apr 12, 2019
1f20274
Merge remote-tracking branch 'origin/master' into rong_int8_pr
rongzha1 Apr 12, 2019
e8e580b
alloc memeory through TmpMemMgr
rongzha1 Apr 12, 2019
c96103f
fix comments Apr.12
triplekings Apr 13, 2019
4a4556b
change sum to elemwise_add
rongzha1 Apr 13, 2019
f156005
change Sum to ElemwiseAdd
rongzha1 Apr 18, 2019
55b0103
fix indents
rongzha1 Apr 18, 2019
f51d055
fix conflict
rongzha1 Apr 18, 2019
3a794c4
retrigger CI
rongzha1 Apr 18, 2019
5679389
Merge remote-tracking branch 'origin/master' into rong_int8_pr
rongzha1 Apr 22, 2019
11a6206
Merge remote-tracking branch 'origin' into rong_int8_pr
triplekings Apr 23, 2019
4ddf2c7
trigger CI
rongzha1 Apr 23, 2019
4e5b586
Merge remote-tracking branch 'origin' into rong_int8_pr
rongzha1 Apr 23, 2019
a444555
Merge remote-tracking branch 'origin' into rong_int8_pr
rongzha1 Apr 25, 2019
89c30a3
fix indentation and typo
rongzha1 Apr 25, 2019
9cb8bbe
trigger CI
rongzha1 Apr 26, 2019
e55b27b
fix typo
rongzha1 Apr 26, 2019
fa3d1e4
fix typo
rongzha1 Apr 26, 2019
11cd34a
remove USE_MKLDNN macro for requantize params
rongzha1 Apr 28, 2019
c18eeec
rename param same as its op
rongzha1 Apr 28, 2019
c3ef05d
Merge remote-tracking branch 'origin' into rong_int8_pr
rongzha1 Apr 28, 2019
45d914a
Merge remote-tracking branch 'origin' into rong_int8_pr
rongzha1 Apr 29, 2019
34bec4d
trigger CI
rongzha1 Apr 29, 2019
3d5c2e7
Merge remote-tracking branch 'origin' into rong_int8_pr
rongzha1 Apr 30, 2019
440a7a5
trigger CI
rongzha1 Apr 30, 2019
3e6762e
trigger CI
rongzha1 Apr 30, 2019
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file mkldnn_quantized_elemwise_add-inl.h
* \brief
* \author Rong Zhang
*/

#ifndef MXNET_OPERATOR_QUANTIZATION_MKLDNN_MKLDNN_QUANTIZED_ELEMWISE_ADD_INL_H_
#define MXNET_OPERATOR_QUANTIZATION_MKLDNN_MKLDNN_QUANTIZED_ELEMWISE_ADD_INL_H_
#if MXNET_USE_MKLDNN == 1

#include "../../tensor/elemwise_unary_op.h"

namespace mxnet {
namespace op {

struct RequantizeElemwiseAddParam : public dmlc::Parameter<RequantizeElemwiseAddParam> {
dmlc::optional<float> min_calib_range;
dmlc::optional<float> max_calib_range;
DMLC_DECLARE_PARAMETER(RequantizeElemwiseAddParam) {
DMLC_DECLARE_FIELD(min_calib_range)
.set_default(dmlc::optional<float>())
.describe("The minimum scalar value in the form of float32 obtained "
"through calibration. If present, it will be used to requantize the "
"int8 output data.");
DMLC_DECLARE_FIELD(max_calib_range)
.set_default(dmlc::optional<float>())
.describe("The maximum scalar value in the form of float32 obtained "
"through calibration. If present, it will be used to requantize the "
"int8 output data.");
}
};

namespace quantized_elemwise_add_enum {
enum QuantizedElemwiseAddOutputs { kOut, kMin, kMax };
enum QuantizedElemwiseAddInputs { kDataA, kDataB, kAMin, kAMax, kBMin, kBMax};
}

} // namespace op
} // namespace mxnet

#endif // MXNET_USE_MKLDNN == 1
#endif // MXNET_OPERATOR_QUANTIZATION_MKLDNN_MKLDNN_QUANTIZED_ELEMWISE_ADD_INL_H_
206 changes: 206 additions & 0 deletions src/operator/quantization/mkldnn/mkldnn_quantized_elemwise_add.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,206 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file mkldnn_quantized_elemwise_add.cc
* \brief
*/

#if MXNET_USE_MKLDNN == 1
#include "./mkldnn_quantized_elemwise_add-inl.h"
#include "../../nn/mkldnn/mkldnn_ops-inl.h"
#include "../../nn/mkldnn/mkldnn_base-inl.h"
#include "../quantization_utils.h"

namespace mxnet {
namespace op {

DMLC_REGISTER_PARAMETER(RequantizeElemwiseAddParam);

static inline float GetScale(const NDArray& data, float min, float max) {
auto data_range = (data.dtype() == mshadow::kInt8) ? kInt8Range : kUint8Range;
return data_range / MaxAbs(min, max);
}

static void MKLDNNQuantizedElemwiseAddForward(const nnvm::NodeAttrs& attrs, const OpContext& ctx,
const std::vector<NDArray>& in_data,
const std::vector<OpReqType>& req,
const std::vector<NDArray>& out_data) {
const RequantizeElemwiseAddParam& params = nnvm::get<RequantizeElemwiseAddParam>(attrs.parsed);
// A, B, A_min, A_max, B_min, B_max
CHECK_EQ(in_data.size(), 6U) << "should be A, B, A_min, A_max, B_min, B_max";
// C, C_min, C_max
CHECK_EQ(out_data.size(), 3U) << "should be C, C_min, C_max";
// Collect data min,max,absmax
const float dataA_min = in_data[quantized_elemwise_add_enum::kAMin].data().dptr<float>()[0];
const float dataB_min = in_data[quantized_elemwise_add_enum::kBMin].data().dptr<float>()[0];
const float dataA_max = in_data[quantized_elemwise_add_enum::kAMax].data().dptr<float>()[0];
const float dataB_max = in_data[quantized_elemwise_add_enum::kBMax].data().dptr<float>()[0];
const float dataA_absmax = MaxAbs(dataA_min, dataA_max);
const float dataB_absmax = MaxAbs(dataB_min, dataB_max);

auto dataA_mem = in_data[quantized_elemwise_add_enum::kDataA].GetMKLDNNData();
auto dataB_mem = in_data[quantized_elemwise_add_enum::kDataB].GetMKLDNNData();
const bool is_dataA_int8 = (in_data[quantized_elemwise_add_enum::kDataA].dtype()
== mshadow::kInt8);
const size_t dataA_range = is_dataA_int8 ? kInt8Range : kUint8Range;

const float A_scale = GetScale(in_data[quantized_elemwise_add_enum::kDataA],
dataA_min,
dataA_max);
const float B_scale = GetScale(in_data[quantized_elemwise_add_enum::kDataB],
dataB_min,
dataB_max);
// rescaled_mem is for reorder mkldnn memory
mkldnn::memory *rescaled_mem;

// output default set as int32
size_t output_data_range = kInt32Range;
auto output_data_type = mkldnn::memory::s32;
// dataA && dataB are uint8
if (out_data[quantized_elemwise_add_enum::kOut].dtype() == mshadow::kInt8) {
output_data_range = kInt8Range;
output_data_type = mkldnn::memory::s8;
} else if (out_data[quantized_elemwise_add_enum::kOut].dtype() == mshadow::kUint8) {
output_data_range = kUint8Range;
output_data_type = mkldnn::memory::u8;
} else {
output_data_range = kInt32Range;
output_data_type = mkldnn::memory::s32;
}

float output_min = 0;
float output_max = 0;
float out_data_scale = 0;
if (params.max_calib_range.has_value() && params.min_calib_range.has_value()) {
output_min = params.min_calib_range.value();
output_max = params.max_calib_range.value();
out_data_scale = output_data_range / MaxAbs(output_min, output_max);
} else {
output_max = dataA_absmax + dataB_absmax;
output_min = -output_max;
}
// 2: scale 0 for dataA, scale 1 for data B
const int scales_num = 2;
std::vector<float> scales(scales_num, 1);
if (in_data[quantized_elemwise_add_enum::kDataA].dtype()
!= in_data[quantized_elemwise_add_enum::kDataB].dtype()) {
auto s8_pd = (is_dataA_int8 == true)
? dataA_mem->get_primitive_desc()
: dataB_mem->get_primitive_desc();
rescaled_mem = TmpMemMgr::Get()->Alloc(s8_pd);
float u8_reorder_scale = 0;
if (params.max_calib_range.has_value() && params.min_calib_range.has_value()) {
if (is_dataA_int8 == true) {
u8_reorder_scale = out_data_scale / B_scale;
scales[0] = out_data_scale / A_scale;
} else {
u8_reorder_scale = out_data_scale / A_scale;
scales[1] = out_data_scale / B_scale;
}
} else {
// x*dataA_absmax/dataA_range = y*(dataA_absmax+dataB_absmax)/output_range
if (is_dataA_int8 == true) {
u8_reorder_scale = dataB_absmax * output_data_range
/ ((dataA_absmax + dataB_absmax) * kUint8Range);
scales[0] = dataA_absmax * output_data_range
/ ((dataA_absmax + dataB_absmax) * dataA_range);
} else {
u8_reorder_scale = dataA_absmax * output_data_range
/ ((dataA_absmax + dataB_absmax) * dataA_range);
scales[1] = dataB_absmax * output_data_range
/ ((dataA_absmax + dataB_absmax) * kInt8Range);
}
}
std::vector<float> reorder_scale = {u8_reorder_scale};
primitive_attr reorder_attr;
reorder_attr.set_int_output_round_mode(round_mode::round_nearest);
reorder_attr.set_output_scales(0, reorder_scale);
auto u8_mem = (is_dataA_int8 == true) ? dataB_mem : dataA_mem;
const auto reorder_pd = mkldnn::reorder::primitive_desc(u8_mem->get_primitive_desc(),
s8_pd,
reorder_attr);
MKLDNNStream::Get()->RegisterPrim(mkldnn::reorder(reorder_pd, *u8_mem, *rescaled_mem));

if (is_dataA_int8 == true) {
dataB_mem = rescaled_mem;
} else {
dataA_mem = rescaled_mem;
}
} else {
// same data type and has same data range
if (params.max_calib_range.has_value() && params.min_calib_range.has_value()) {
scales[0] = out_data_scale / A_scale;
scales[1] = out_data_scale / B_scale;
} else {
scales[0] = dataA_absmax * output_data_range / ((dataA_absmax + dataB_absmax) * dataA_range);
scales[1] = dataB_absmax * output_data_range / ((dataA_absmax + dataB_absmax) * dataA_range);
}
}

std::vector<mkldnn::primitive::at> in_prims;
std::vector<mkldnn::memory::primitive_desc> in_pds;
in_prims.push_back(*dataA_mem);
in_prims.push_back(*dataB_mem);
in_pds.push_back(dataA_mem->get_primitive_desc());
in_pds.push_back(dataB_mem->get_primitive_desc());
size_t i_ndim = in_data[quantized_elemwise_add_enum::kDataA].shape().ndim();
mkldnn::memory::dims i_dims = mkldnn::memory::dims(i_ndim);
for (size_t i = 0; i < i_ndim; i++) {
i_dims[i] = static_cast<int>(in_data[quantized_elemwise_add_enum::kDataA].shape()[i]);
}
mkldnn::memory::format i_fmt = static_cast<mkldnn::memory::format>(
in_pds[quantized_elemwise_add_enum::kDataA].desc().data.format);
auto output_desc = mkldnn::memory::desc(i_dims, output_data_type, i_fmt);
mkldnn::sum::primitive_desc pdesc(output_desc, scales, in_pds);
auto mem = CreateMKLDNNMem(out_data[quantized_elemwise_add_enum::kOut],
pdesc.dst_primitive_desc(),
req[0],
&in_data[0]);
MKLDNNStream *stream = MKLDNNStream::Get();
stream->RegisterPrim(mkldnn::sum(pdesc, in_prims, *mem.second));
CommitOutput(out_data[quantized_elemwise_add_enum::kOut], mem);
stream->Submit();

out_data[quantized_elemwise_add_enum::kMin].data().dptr<float>()[0] = output_min;
out_data[quantized_elemwise_add_enum::kMax].data().dptr<float>()[0] = output_max;
}

inline static bool ElemwiseAddStorageType(const nnvm::NodeAttrs& attrs, const int dev_mask,
DispatchMode* dispatch_mode, std::vector<int>* in_attrs,
std::vector<int>* out_attrs) {
// Check num of inputs: A, B, A_min, A_max, B_min, B_max
CHECK_EQ(in_attrs->size(), 6U);
// Check num of outputs: C, C_min, C_max
CHECK_EQ(out_attrs->size(), 3U);

return MKLDNNStorageType(attrs, dev_mask, true, dispatch_mode, in_attrs, out_attrs);
}

NNVM_REGISTER_OP(_contrib_quantized_elemwise_add)
.set_attr<FInferStorageType>("FInferStorageType", ElemwiseAddStorageType)
.set_attr<FComputeEx>("FComputeEx<cpu>", MKLDNNQuantizedElemwiseAddForward)
.set_attr<bool>("TIsMKLDNN", true)
.set_attr_parser(ParamParser<RequantizeElemwiseAddParam>)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It's quantize in the operator name but requantize in the param name. Is it intentional?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes. this is for fusion with requantized

.add_arguments(RequantizeElemwiseAddParam::__FIELDS__());
} // namespace op
} // namespace mxnet

#endif // MXNET_USE_MKLDNN == 1
1 change: 1 addition & 0 deletions src/operator/quantization/quantization_utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ namespace op {

static const size_t kUint8Range = 255;
static const size_t kInt8Range = 127;
static const size_t kInt32Range = 0x7fffffff;

template<typename T>
MSHADOW_XINLINE int Sign(T val) {
Expand Down
Loading