Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[Numpy] add isposinf isneginf isfinite #17563

Merged
merged 1 commit into from
Feb 14, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
152 changes: 149 additions & 3 deletions python/mxnet/ndarray/numpy/_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,8 @@
'tril', 'identity', 'take', 'ldexp', 'vdot', 'inner', 'outer',
'equal', 'not_equal', 'greater', 'less', 'greater_equal', 'less_equal', 'hsplit', 'rot90', 'einsum',
'true_divide', 'nonzero', 'quantile', 'percentile', 'shares_memory', 'may_share_memory',
'diff', 'resize', 'polyval', 'nan_to_num', 'isnan', 'isinf', 'where', 'bincount']
'diff', 'resize', 'polyval', 'nan_to_num', 'isnan', 'isinf', 'isposinf', 'isneginf', 'isfinite',
'where', 'bincount']


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -6759,9 +6760,8 @@ def isnan(x, out=None, **kwargs):
Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
This means that Not a Number is not equivalent to infinity.

This function differs from the original `numpy.isnan
This function differs from the original `numpy.isinf
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html>`_ in
the following aspects:
- Does not support complex number for now
Expand Down Expand Up @@ -6835,6 +6835,152 @@ def isinf(x, out=None, **kwargs):
return _unary_func_helper(x, _npi.isinf, _np.isinf, out=out, **kwargs)


@wrap_np_unary_func
def isposinf(x, out=None, **kwargs):
"""
Test element-wise for positive infinity, return result as bool array.

Parameters
----------
x : ndarray
Input array.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.

Returns
-------
y : ndarray or bool
True where x is positive infinity, false otherwise.
This is a scalar if x is a scalar.

Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
This means that Not a Number is not equivalent to infinity.

Examples
--------
>>> np.isposinf(np.inf)
True
>>> np.isposinf(-np.inf)
False
>>> np.isposinf(np.nan)
False
>>> np.isposinf(np.array([-np.inf, 0., np.inf]))
array([False, False, True])
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([True, True, True], dtype=np.bool)
>>> np.isposinf(x, y)
array([False, False, True])
>>> y
array([False, False, True])
"""
return _unary_func_helper(x, _npi.isposinf, _np.isposinf, out=out, **kwargs)


@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def isneginf(x, out=None, **kwargs):
"""
Test element-wise for negative infinity, return result as bool array.

Parameters
----------
x : ndarray
Input array.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.

Returns
-------
y : ndarray or bool
True where x is negative infinity, false otherwise.
This is a scalar if x is a scalar.

Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
This means that Not a Number is not equivalent to infinity.

Examples
--------
>>> np.isneginf(-np.inf)
True
>>> np.isneginf(np.inf)
False
>>> np.isneginf(float('-inf'))
True
>>> np.isneginf(np.array([-np.inf, 0., np.inf]))
array([ True, False, False])
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([True, True, True], dtype=np.bool)
>>> np.isneginf(x, y)
array([ True, False, False])
>>> y
array([ True, False, False])
"""
return _unary_func_helper(x, _npi.isneginf, _np.isneginf, out=out, **kwargs)


@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def isfinite(x, out=None, **kwargs):
"""
Test element-wise for finiteness (not infinity or not Not a Number).

Parameters
----------
x : ndarray
Input array.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.

Returns
-------
y : ndarray or bool
True where x is negative infinity, false otherwise.
This is a scalar if x is a scalar.

Notes
-----
Not a Number, positive infinity and negative infinity are considered to be non-finite.

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
This means that Not a Number is not equivalent to infinity.
Also that positive infinity is not equivalent to negative infinity.
But infinity is equivalent to positive infinity. Errors result if the second argument
is also supplied when x is a scalar input, or if first and second arguments have different shapes.

Examples
--------
>>> np.isfinite(1)
True
>>> np.isfinite(0)
True
>>> np.isfinite(np.nan)
False
>>> np.isfinite(np.inf)
False
>>> np.isfinite(-np.inf)
False
>>> np.isfinite(np.array([np.log(-1.),1.,np.log(0)]))
array([False, True, False])
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([True, True, True], dtype=np.bool)
>>> np.isfinite(x, y)
array([False, True, False])
>>> y
array([False, True, False])
"""
return _unary_func_helper(x, _npi.isfinite, _np.isfinite, out=out, **kwargs)


@set_module('mxnet.ndarray.numpy')
def where(condition, x=None, y=None): # pylint: disable=too-many-return-statements
"""where(condition, [x, y])
Expand Down
152 changes: 149 additions & 3 deletions python/mxnet/numpy/multiarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@
'unique', 'lcm', 'tril', 'identity', 'take', 'ldexp', 'vdot', 'inner', 'outer', 'equal', 'not_equal',
'greater', 'less', 'greater_equal', 'less_equal', 'hsplit', 'rot90', 'einsum', 'true_divide', 'nonzero',
'quantile', 'percentile', 'shares_memory', 'may_share_memory', 'diff', 'resize', 'matmul',
'nan_to_num', 'isnan', 'isinf', 'polyval', 'where', 'bincount']
'nan_to_num', 'isnan', 'isinf', 'isposinf', 'isneginf', 'isfinite', 'polyval', 'where', 'bincount']

__all__ += fallback.__all__

Expand Down Expand Up @@ -8827,9 +8827,8 @@ def isnan(x, out=None, **kwargs):
Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
This means that Not a Number is not equivalent to infinity.

This function differs from the original `numpy.isnan
This function differs from the original `numpy.isinf
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html>`_ in
the following aspects:
- Does not support complex number for now
Expand Down Expand Up @@ -8903,6 +8902,153 @@ def isinf(x, out=None, **kwargs):
return _mx_nd_np.isinf(x, out=out, **kwargs)


@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def isposinf(x, out=None, **kwargs):
"""
Test element-wise for positive infinity, return result as bool array.

Parameters
----------
x : ndarray
Input array.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.

Returns
-------
y : ndarray or bool
True where x is positive infinity, false otherwise.
This is a scalar if x is a scalar.

Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
This means that Not a Number is not equivalent to infinity.

Examples
--------
>>> np.isposinf(np.inf)
True
>>> np.isposinf(-np.inf)
False
>>> np.isposinf(np.nan)
False
>>> np.isposinf(np.array([-np.inf, 0., np.inf]))
array([False, False, True])
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([True, True, True], dtype=np.bool)
>>> np.isposinf(x, y)
array([False, False, True])
>>> y
array([False, False, True])
"""
return _mx_nd_np.isposinf(x, out=out, **kwargs)


@set_module('mxnet.numpy')
@wrap_np_unary_func
def isneginf(x, out=None, **kwargs):
"""
Test element-wise for negative infinity, return result as bool array.

Parameters
----------
x : ndarray
Input array.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.

Returns
-------
y : ndarray or bool
True where x is negative infinity, false otherwise.
This is a scalar if x is a scalar.

Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
This means that Not a Number is not equivalent to infinity.

Examples
--------
>>> np.isneginf(-np.inf)
True
>>> np.isneginf(np.inf)
False
>>> np.isneginf(float('-inf'))
True
>>> np.isneginf(np.array([-np.inf, 0., np.inf]))
array([ True, False, False])
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([True, True, True], dtype=np.bool)
>>> np.isneginf(x, y)
array([ True, False, False])
>>> y
array([ True, False, False])
"""
return _mx_nd_np.isneginf(x, out=out, **kwargs)


@set_module('mxnet.numpy')
@wrap_np_unary_func
def isfinite(x, out=None, **kwargs):
"""
Test element-wise for finiteness (not infinity or not Not a Number).

Parameters
----------
x : ndarray
Input array.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.

Returns
-------
y : ndarray or bool
True where x is negative infinity, false otherwise.
This is a scalar if x is a scalar.

Notes
-----
Not a Number, positive infinity and negative infinity are considered to be non-finite.

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
This means that Not a Number is not equivalent to infinity.
Also that positive infinity is not equivalent to negative infinity.
But infinity is equivalent to positive infinity. Errors result if the second argument
is also supplied when x is a scalar input, or if first and second arguments have different shapes.

Examples
--------
>>> np.isfinite(1)
True
>>> np.isfinite(0)
True
>>> np.isfinite(np.nan)
False
>>> np.isfinite(np.inf)
False
>>> np.isfinite(-np.inf)
False
>>> np.isfinite(np.array([np.log(-1.),1.,np.log(0)]))
array([False, True, False])
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([True, True, True], dtype=np.bool)
>>> np.isfinite(x, y)
array([False, True, False])
>>> y
array([False, True, False])
"""
return _mx_nd_np.isfinite(x, out=out, **kwargs)


@set_module('mxnet.numpy')
def where(condition, x=None, y=None):
"""where(condition, [x, y])
Expand Down
3 changes: 3 additions & 0 deletions python/mxnet/numpy_dispatch_protocol.py
Original file line number Diff line number Diff line change
Expand Up @@ -175,6 +175,9 @@ def _run_with_array_ufunc_proto(*args, **kwargs):
'empty_like',
'nan_to_num',
'isnan',
'isfinite',
'isposinf',
'isneginf',
'isinf',
]

Expand Down
Loading